[1]胡启国,魏 晨,陆 伟,等.空气悬架混杂系统车身高度与可调阻尼分层控制[J].郑州大学学报(工学版),2023,44(03):96-103.[doi:10.13705/j.issn.1671-6833.2023.03.009]
 HU Qiguo,WEI Chen,LU Wei,et al.Hierarchical Control of Body Height and Adjustable Damping in Air Suspension Hybrid System[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):96-103.[doi:10.13705/j.issn.1671-6833.2023.03.009]
点击复制

空气悬架混杂系统车身高度与可调阻尼分层控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
96-103
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Hierarchical Control of Body Height and Adjustable Damping in Air Suspension Hybrid System
作者:
胡启国1 魏 晨1 陆 伟1 雷旭东2 梁 栋1
1.重庆交通大学 机电与车辆工程学院,重庆 400074; 2.重庆铁马工业集团有限公司,重庆 400050
Author(s):
HU Qiguo1WEI Chen1LU Wei1 LEI Xudong2LIANG Dong1
1.School of Mechanotronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2.Chongqing Tiema Industries Group Co.,Ltd., Chongqing 400050, China
关键词:
空气悬架 混合逻辑动态 混杂系统 混杂模型预测控制 分层控制
Keywords:
air suspension mixed logical dynamical hybrid system hybrid model predictive control hierarchical control
分类号:
U463. 33
DOI:
10.13705/j.issn.1671-6833.2023.03.009
文献标志码:
A
摘要:
针对空气悬架车身高度调节控制过程中车身高度和阻尼器阻尼力难以进行协调控制的难题,提出一种基 于混合逻辑动态( MLD) 模型的空气悬架车身高度与可调阻尼分层控制策略。考虑空气悬架充放气过程中存在的 混杂特性,应用 MLD 建模方法建立具有电磁阀和磁流变阻尼器的非线性空气悬架混杂系统模型,设计描述电磁阀 开关状态的混杂自动机进行车高调节上层控制,基于混杂模型预测控制方法对磁流变阻尼器输入电流进行下层控 制,进而通过改变电磁阀开关状态和磁流变阻尼器输入电流实现车身高度与可调阻尼分层控制。在随机路面激励 工况下进行仿真验证,结果表明: 所提控制方法在有效跟踪车身高度的同时,车身加速度相比于被动悬架和混杂模 型预测控制分别降低了 34. 33%、34. 34%,不仅能有效提高车辆乘坐舒适性,也能直接防止电磁阀频繁切换现象的 发生,从而延长电磁阀的使用寿命。
Abstract:
To address the difficult problem of coordinated control of body height and damper damping force during air suspension body height adjustment control, a hierarchical control strategy of air suspension body height and adjustable damping based on the mixed logic dynamic (MLD) model was proposed. Considering the hybrid characteristics of the air suspension in the process of inflating and deflating, the MLD modelling method was used to establish a nonlinear air suspension hybrid model with solenoid valves and magnetorheological dampers. The hybrid automaton describing the switching state of the solenoid valves was designed for the upper level control of body height adjustment, and the input current of the magneto rheological dampers was controlled at the lower level based on the predictive control method of the hybrid model. And then hierarchical control of body height and adjustable damping was realized by changing the switching state of the solenoid valves and the input current of the magneto rheological dampers. Through the simulation verification in random road excitation conditions, it could be concluded that the proposed control method could effectively track vehicle height while reducing vehicle acceleration by 34.33% and 34.34% compared to passive suspension and hybrid model predictive control, respectively, which could not only improve the ride comfort of the vehicle, but also directly prevent the frequent switching of solenoid valves and extending the service life of solenoid valves.

参考文献/References:

[1] 时刚, 田新涛. 工程卡车行驶引发地面振动特性研究[J]. 郑州大学学报(工学版), 2020, 41(5): 76-81.SHI G, TIAN X T. Research on ground vibration characteristics caused by engineering truck driving[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 76-81.

[2] ZHAO R C, XIE W, WONG P K, et al. Robust ride height control for active air suspension systems with multiple unmodeled dynamics and parametric uncertainties[J]. IEEE Access, 2019, 7: 59185-59199.
[3] HU Y L, CHEN M Z Q, SUN Y H. Comfort-oriented vehicle suspension design with skyhook inerter configuration[J]. Journal of Sound and Vibration, 2017, 405: 34-47.
[4] NA J, HUANG Y B, WU X, et al. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2639-2650.
[5] WEN S F, SHEN Y J, LI X H, et al. Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms[J]. International Journal of Non-Linear Mechanics, 2016, 84: 130-138.
[6] ZHANG Y Q, LIU Y J, WANG Z F, et al. Neural networks-based adaptive dynamic surface control for vehicle active suspension systems with time-varying displacement constraints[J]. Neurocomputing, 2020, 408: 176-187.
[7] SUN H, LI Y M, XU K, et al. Fuzzy adaptive backstepping control for a class of active suspension systems[J]. IFAC-PapersOnLine, 2018, 51(31): 136-141.
[8] SUN X Q, CAI Y F, WANG S H, et al. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 152-162.
[9] HAJFREJ G B, MOREAU X, HAMROUNI E, et al. Multi-modes control for semi-active suspension systems[J]. IFAC-PapersOnLine, 2020, 53(2): 14407-14412.
[10] 徐兴, 陈照章, 黄俊明, 等. 电控空气悬架充放气的动态建模及特性仿真[J]. 系统仿真学报, 2011, 23(6): 1225-1228.XU X, CHEN Z Z, HUANG J M, et al. Dynamic modeling and characteristic simulation of charging-discharging system for electronically controlled air suspension[J]. Journal of System Simulation, 2011, 23(6): 1225-1228.
[11] 刘本学, 蔺超云, 郭沛东, 等. 基于MATLAB的汽车线性最优控制主动悬架仿真研究[J]. 郑州大学学报(工学版), 2016, 37(5): 72-76.LIU B X, LIN C Y, GUO P D, et al. Research of simulation in the linear optimal control active suspension of vehicle based on MATLAB[J]. Journal of Zhengzhou University (Engineering Science), 2016, 37(5): 72-76.
[12] 马然, 朱思洪, 梁林, 等. 磁流变减振器建模与试验[J]. 机械工程学报, 2014, 50(4): 135-141.MA R, ZHU S H, LIANG L, et al. Modelling and testing of magnetorheological damper[J]. Journal of Mechanical Engineering, 2014, 50(4): 135-141.
[13] SUN X Q, WU P C, CAI Y F, et al. Piecewise affine modeling and hybrid optimal control of intelligent vehicle longitudinal dynamics for velocity regulation[J]. Mechanical Systems and Signal Processing, 2022, 162: 108089.
[14] HU Q G, LU W, JIANG J Z. Dynamic modeling and adjustable damping layered control of air suspension hybrid system[J]. Australian Journal of Mechanical Engineering, 2022, 20(1): 1-13.
[15] 孙士雷, 韩振南. 轿车ECAS充放气时平顺性的控制研究[J]. 机械设计与制造, 2020(11): 49-52.SUN S L, HAN Z N. Study on the control of ride comfort based on ECAS car ramp[J]. Machinery Design &Manufacture, 2020(11): 49-52.
[16] HEJRI M, GIUA A, MOKHTARI H. On the complexity and dynamical properties of mixed logical dynamical systems via an automaton-based realization of discrete-time hybrid automaton[J]. International Journal of Robust and Nonlinear Control, 2018, 28(16): 4713-4746.

相似文献/References:

[1]秦东晨,李浩亮..基于刚柔耦合的空气悬架建模、仿真与优化研究[J].郑州大学学报(工学版),2010,31(04):73.[doi:10.3969/j.issn.1671-6833.2010.04.018]

更新日期/Last Update: 2023-05-09