[1] EVANS C D, MONTEITH D T, COOPER D M. Longterm increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts [ J ]. Environmental pollution, 2005, 137
(1): 55-71.
[2] PILLA R M, COUTURE R M. Attenuation of photosynthetically active radiation and ultraviolet radiation in response to changing dissolved organic carbon in browning lakes: modeling and parametrization [ J]. Limnology
and oceanography, 2021, 66(6): 2278-2289.
[3] 侯迪波, 张坚, 陈泠, 等. 基于紫外-可见光光谱的水质分析方法研究进展与应用[J]. 光谱学与光谱分析, 2013, 33(7): 1839-1844.
HOU D B, ZHANG J, CHEN L, et al. Water quality analysis by UV-vis spectroscopy: a review of methodology and application[J]. Spectroscopy and spectral analysis, 2013, 33(7): 1839-1844.
[4] 彭保发, 陈哲夫, 李建辉, 等. 基于GF-1 影像的洞庭湖区水体水质遥感监测[ J]. 地理研究, 2018,37(9): 1683-1691.
PENG B F, CHEN Z F, LI J H, et al. Monitoring water quality of Dongting Lake region based on GF-1 image[J]. Geographical research, 2018, 37(9): 1683-1691.
[5] CHERUKURU N, FORD P W, MATEAR R J, et al. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations[J]. International journal of applied earth
observation and geoinformation, 2016, 52: 149-154.
[6] KUTSER T, VERPOORTER C, PAAVEL B, et al. Estimating Lake carbon fractions from remote sensing data[J]. Remote sensing of environment, 2015, 157:138-146.
[7] 徐良将, 黄昌春, 李云梅, 等. 基于高光谱遥感反射率的总氮总磷的反演[ J]. 遥感技术与应用,2013, 28(4): 681-688.
XU L J, HUANG C C, LI Y M, et al. Deriving concentration of TN, TP based on hyper spectral reflectivity[J]. Remote sensing technology and application, 2013, 28(4): 681-688.
[8] 蔡婉贞, 黄翰. 基于BP-RBF 神经网络的组合模型预测港口物流需求研究[J]. 郑州大学学报(工学版), 2019, 40(5): 85-91.
CAI W Z, HUANG H. A model based on the combination of BP and RBF neural network for port logistic demand forecasting[J]. Journal of Zhengzhou university (engineering science), 2019, 40(5): 85-91.
[9] 马丰魁, 姜群鸥, 徐藜丹, 等. 基于BP 神经网络算法的密云水库水质参数反演研究[J]. 生态环境学报, 2020, 29(3): 569-579.
MA F K, JIANG Q O, XU L D, et al. Retrieval of water quality parameters based on BP neural network algorithm in Miyun reservoir[J]. Ecology and environmental sciences, 2020, 29(3): 569-579.
[10] 夏晓芸, 解启蒙, 杨国范, 等. 大伙房水库叶绿素a浓度反演模型研究[J]. 节水灌溉, 2018(8): 39-42, 46.
XIA X Y, XIE Q M, YANG G F, et al. A study on remote sensing inversion model of chlorophyll-A in Dahuofang reservoir based on HJ - 1A/ 1B data [ J].Water saving irrigation, 2018(8): 39-42, 46.
[11] 张明慧, 苏华, 季博文. MODIS 时序影像的福建近岸叶绿素a 浓度反演[J]. 环境科学学报, 2018, 38(12): 4831-4839.
ZHANG M H, SU H, JI B W. Retrieving nearshorechlorophyll-a concentration using MODIS time-series images in the Fujian Province (China)[J]. Acta scientiae circumstantiae, 2018, 38(12): 4831-4839.
[12] 盛辉, 池海旭, 许明明, 等. 改进SVR 的内陆水体COD 高光谱遥感反演[ J]. 光谱学与光谱分析,2021, 41(11): 3565-3571.
SHENG H, CHI H X, XU M M, et al. Inland water chemical oxygen demand estimation based on improved SVR for hyperspectral data [ J]. Spectroscopy and spectral analysis, 2021, 41(11): 3565-3571.
[13] SHAHRIARI B, SWERSKY K, WANG Z Y, et al.Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175.
[14] 韩中含, 徐白山, 杨成林, 等. 基于Planet 多光谱影像的南海岛礁水深反演研究[J]. 测绘与空间地理信息, 2020, 43(12): 139-142, 146.
HAN Z H, XU B S, YANG C L, et al. Research on reef depth retrieval of South China Sea Island based on planet multispectral image[J]. Geomatics & spatial information technology, 2020, 43(12): 139-142, 146.
[15] 吴志明, 李建超, 王睿, 等. 基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM) 浓度遥感估算[J]. 湖泊科学, 2018, 30(4): 979-991.
WU Z M, LI J C, WANG R, et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of lake sciences,2018, 30(4): 979-991.
[16] 王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49-55.
WANG Y S, XIA S T. A survey of random forests algorithms[J]. Information and communications technologies,2018, 12(1): 49-55.
[17] 方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[ J]. 遥感学报, 2019,23(4): 756-772.
FANG X R, WEN Z F, CHEN J L, et al. Remote sensing estimation of suspended sediment concentration based on random forest regression model[J]. Journal of remote sensing, 2019, 23(4): 756-772.