[1]赵 军,高 宁,李小鹏,等.磁流变阻尼器滞回性能试验与计算模型分析[J].郑州大学学报(工学版),2023,44(06):91-98.[doi:10.13705/j.issn.1671-6833.2023.03.021]
 ZHAO Jun,GAO Ning,LI Xiaopeng,et al.Experimental and Calculation Model Analysis on Hysteresis Properties of Magnetorheological Damper[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):91-98.[doi:10.13705/j.issn.1671-6833.2023.03.021]
点击复制

磁流变阻尼器滞回性能试验与计算模型分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年06期
页码:
91-98
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Experimental and Calculation Model Analysis on Hysteresis Properties of Magnetorheological Damper
作者:
赵 军 高 宁 李小鹏 雷波波 赵 毅
郑州大学 土木工程学院,河南 郑州 450001
Author(s):
ZHAO Jun GAO Ning LI Xiaopeng LEI Bobo ZHAO Yi
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
磁流变阻尼器 往复荷载 阻尼力 阻尼力-位移曲线 曲线模型
Keywords:
magnetorheological damper cyclic loading damping force damping force-displacement curve curve model
分类号:
O482. 54
DOI:
10.13705/j.issn.1671-6833.2023.03.021
文献标志码:
A
摘要:
为研究磁流变阻尼器( MRD) 的力学性能,共完成了 11 组轴向往复荷载作用下 MRD 力学性能试验,分 别考虑了电流大小、峰值点位移、加载速率和电流控制方式等因素的影响,分析了 MRD 阻尼力-位移曲线变化规 律和各阶段特征。 结果表明:轴向往复荷载作用下,MRD 峰值点阻尼力基本随电流大小呈线性增长;峰值点位 移小于初始位移时,MRD 峰值点阻尼力较小,峰值点位移大于初始位移时,MRD 峰值点阻尼力较为稳定;MRD 峰值点阻尼力随加载速率的增大而增大;加载过程中关闭电流,MRD 阻尼力将迅速降低至 0 A 时阻尼力,若继续 通电,则 MRD 阻尼力仍能在较短加载位移后达到稳定状态。 最后,建立了考虑电流大小、峰值点位移、加载速率 及电流控制方式等影响因素的 MRD 阻尼力-位移曲线计算模型,经验证,计算曲线与试验曲线能较好地吻合。 关键词:磁流变阻尼器; 往复荷载; 阻尼力; 阻尼力-位移曲线; 曲线模型
Abstract:
To study the mechanical properties of magnetorheological damper (MRD), 11 groups of MRD mechanical properties tests with axially cyclic loading were completed. The effects of current size, peak displacement, loading rate and current control mode were considered. The variation law of damping force-displacement curve and characteristics of each stage of MRD were analyzed. The results showed that the damping force at the peak point of MRD increased linearly with the current. When the peak displacement was less than the initial displacement, the MRD peak damping force was small, and when the peak displacement was greater than the initial displacement, the MRD peak damping force was relatively stable; the damping force at the peak point of MRD increased with the increase of loading rate; when the current was closed, the damping force of MRD would be rapidly reduced to 0 A. If the power was continued, the damping force of MRD could still reach a stable state after a short loading displacement. Finally, the calculation model of MRD damping force-displacement curve considering the influence factors such as current size, peak displacement, loading rate and current control mode was established. It was verified that the calculation curve was in good agreement with the experimental curve.

参考文献/References:

[1] BAHAR A, POZO F, ACHO L, et al. Parameter identification of large-scale magnetorheological dampers in a benchmark building[ J] . Computers & Structures, 2010, 88(3 / 4) : 198-206.

 [2] 杨岗, 李芾, 赖森华, 等. 基于磁流变阻尼器的高速 受电弓模糊半主动控制[ J] . 科学技术与工程, 2020, 20(11) : 4534-4539. 
YANG G, LI F, LAI S H, et al. Semi-active control of fuzzy for high-speed pantograph using MRD[ J] . Science Technology and Engineering, 2020, 20 ( 11 ) : 4534-4539. 
[3] 李 金 海. 磁 流 变 液 及 其 智 能 阻 尼 器 的 研 究 与 应 用 [D] . 哈尔滨: 哈尔滨工业大学, 2006. 
LI J H. Research and application of magnetorheological fluid and its intelligent damper[ D] . Harbin: Harbin Institute of Technology, 2006. 
[4] 曹宏. 磁流变阻尼器在拉索减振中的应用研究[ D] . 长沙: 湖南大学, 2006. CAO H. The research on the application of MR damper in cable vibration mitigation[D] . Changsha: Hunan University, 2006. 
[5] 瞿伟廉, 秦顺全, 涂建维, 等. 武汉天兴洲公铁两用 斜拉桥主梁和桥塔纵向列车制动响应智能控制的理 论与关键技术[ J] . 土木工程学报, 2010, 43(8) : 63- 72. 
QU W L, QIN S Q, TU J W, et al. Theory and crucial technologies of intelligent control for responses in deck and towers of Wuhan Tianxingzhou cable-stayed bridge subjected to train braking [ J] . China Civil Engineering Journal, 2010, 43(8) : 63-72.
 [6] WEBER F, DISTL H. Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers [ J ] . Structural Control and Health Monitoring, 2015, 22(2) : 237-254. 
[7] FUJITANI H, SODEYAMA H, TOMURA T, et al. Development of 400 kN magnetorheological damper for a real base-isolated building [ J ] . Proceedings of SPIE, 2003, 5052: 265-276.
 [8] 赵军, 王培培, 冯益博, 等. 配置 MRD 的 CFRP 筋混 凝土柱 抗 震 性 能 试 验 [ J] . 建 筑 科 学 与 工 程 学 报, 2020, 37(4) : 23-31.
 ZHAO J, WANG P P, FENG Y B, et al. Experiment on seismic performance of CFRP reinforced concrete column with MRD [ J] . Journal of Architecture and Civil Engineering, 2020, 37(4) : 23-31.
 [9] FU W Q, ZHANG C W, LI M, et al. Experimental investigation on semi-active control of base isolation system using magnetorheological dampers for concrete frame structure[ J] . Applied Sciences, 2019, 9(18) : 3866. 
[10] 张香成, 陈娜, 罗芳, 等. 铅-磁流变阻尼器在减震结 构中的位置优化[ J] . 郑州大学学报(工学版) , 2018, 39(2) : 44-49.
 ZHANG X C, CHEN N, LUO F, et al. Position optimization of lead magnetroheological damper in energy dissipation structural [ J ] . Journal of Zhengzhou University (Engineering Science) , 2018, 39(2) : 44-49.
 [11] LI J, MEI Z, CHEN J B, et al. Experimental investigations of stochastic control of randomly base-excited structures[ J] . Advances in Structural Engineering, 2012, 15 (11) : 1963-1975. 
[12] 王蒂, 黄平明. 超大跨度斜拉桥纵向减震耗能塔、梁 连接装置研究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2008, 29(4) : 112-115, 144. 
WANG D, HUANG P M. Research on deck-tower connection of super long-span cable-stayed bridge[ J] . Journal of Zhengzhou University ( Engineering Science ) , 2008, 29(4) : 112-115, 144. 
[13] 王作虎, 罗义康, 刘杜, 等. CFRP 筋-高强钢筋 / 高强 混凝土柱的抗震性能 [ J] . 复合材料学报, 2021, 38 (10) : 3463-3473. 
WANG Z H, LUO Y K, LIU D, et al. Seismic behavior of high-strength concrete columns reinforced with CFRP tendons and high-strength steels[ J] . Acta Materiae Compositae Sinica, 2021, 38(10) : 3463-3473.
 [14] ZHAO J, REN W B, RUAN X H, et al. Experimental study on the seismic performance of columns reinforced by the CFRP bar and sheet[ J] . Applied Composite Materials, 2021, 28(4) : 1291-1313.
 [15] 王静峰, 王新乐, 李贝贝, 等. 屈曲约束支撑装配式 混凝土框架结构抗震性能试验研究[ J] . 土木工程学 报, 2018, 51(12) : 72-80. 
WANG J F, WANG X L, LI B B, et al. Experimental studies on seismic performance of prefabricated concrete frame structures with buckling-restrained braces[ J] . China Civil Engineering Journal, 2018, 51(12) : 72-80.
 [16] 马立威, 张海宾, 王燕. 转动型摩擦阻尼器试验研究 与理论分析[ J] . 防灾减灾工程学报, 2021, 41( 5) : 1001-1011. 
MA L W, ZHANG H B, WANG Y. Experimental research and theoretical analysis of rotational friction damper[ J] . Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(5) : 1001-1011.
 [17] ZHANG X C, WU G B, ZHAO J. Quasi-static mechanical properties and mechanical model of MRD[ J] . Journal of Civil and Environmental Engineering, 2020, 42 ( 3) : 46-53.
 [18] 祝世兴, 杨丽昆, 魏戬, 等. 基于改进 Bingham 模型 的磁流变阻尼器力学建模及试验研究[ J] . 重庆理工 大学学报(自然科学) , 2021, 35(4) : 254-264. 
ZHU S X, YANG L K, WEI J, et al. Modeling and experimental study of magnetorheological damper based on improved Bingham model[ J] . Journal of Chongqing University of Technology (Natural Science) , 2021, 35( 4) : 254-264

相似文献/References:

[1]张洵安,谢霄,连业达..巨-子型控制结构体系风振的半主动控制研究[J].郑州大学学报(工学版),2005,26(04):39.[doi:10.3969/j.issn.1671-6833.2005.04.009]
 ZHANG Xunan,XIE Xiao,Lian Yeda.Semi-active control of wind vibration of giant-subtype control structure system[J].Journal of Zhengzhou University (Engineering Science),2005,26(06):39.[doi:10.3969/j.issn.1671-6833.2005.04.009]

更新日期/Last Update: 2023-10-22