[1]郑元勋,孔 孟,王博立,等.桥梁预拱度对行车舒适性的影响及桥面线形调整[J].郑州大学学报(工学版),2024,45(02):106-113.[doi:10.13705/j.issn.1671-6833.2023.05.001]
 ZHENG Yuanxun,KONG Meng,WANG Boli,et al.Influence of Bridge Pre-camber on Traffic Comfort and Adjustment of Bridge Deck Alignment[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):106-113.[doi:10.13705/j.issn.1671-6833.2023.05.001]
点击复制

桥梁预拱度对行车舒适性的影响及桥面线形调整()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年02期
页码:
106-113
栏目:
出版日期:
2024-03-06

文章信息/Info

Title:
Influence of Bridge Pre-camber on Traffic Comfort and Adjustment of Bridge Deck Alignment
作者:
郑元勋 孔 孟 王博立 王长柱 陈 静
1. 郑州大学 黄河实验室,河南 郑州 450001;2. 郑州大学 水利与交通学院,河南 郑州 450001;3. 中交第三公路工 程局有限公司,北京 100304;4. 中国建筑第七工程局有限公司,河南 郑州 450004
Author(s):
ZHENG Yuanxun KONG Meng WANG Boli WANG Changzhu CHEN Jing
1. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China; 2. School of Water Conservancy and Transportation Zhengzhou University, Zhengzhou 450001, China; 3. CCCC Third Highway Engineering Co. , Ltd. , Beijing 100304, China; 4. China Construction Seventh Engineering Division Co. , Ltd. , Zhengzhou 450004, China
关键词:
连续刚构桥 行车舒适性 仿真分析 桥梁预拱度 余弦曲线分配法 桥面线形 白噪声
Keywords:
continuous rigid frame bridge traffic comfort simulation analysis bridge pre-camber cosine line distribution method bridge deck alignment white noise
DOI:
10.13705/j.issn.1671-6833.2023.05.001
文献标志码:
A
摘要:
为研究成桥预拱度对连续刚构桥行车舒适性的影响,以多座主跨跨径为 110 ~ 200 m 的连续刚构桥为研究 对象,首先,采用滤波白噪声法建立桥面时域模型,并与按余弦曲线设置的成桥线形叠加模拟成桥后的桥面不平 度;其次,采用 MATLAB / Simlink 搭建车辆-桥面系统模型,以加速度均方根值( RMS) 作为桥梁边跨、中跨桥面的行 车舒适性评价指标,以最大瞬态振动值(MTVV)作为边跨峰值处短时内的行车舒适性评价指标;最后,分析采取经 验法按照余弦曲线设置成桥预拱度的桥梁其跨径和设计时速对边、中跨 RMS 值的影响,以及成桥预拱度取值对边 跨 3L / 8 处 MTVV 值的影响。 研究结果表明:在边跨、中跨处 RMS 值均小于 0. 315 m / s 2 ,说明采取经验法按照余弦 曲线设置成桥预拱度并不影响中跨处的行车舒适性;在边跨 3L / 8 处 MTVV 值在短时内存在大于 0. 345 m / s 2 的情 况,说明在边跨峰值处短时内会产生一定不舒适感。 提出了一种基于桥面铺装层施工优化边跨 3L / 8 处和边墩墩 顶桥面线形的方法,改善了边跨的行车舒适性。
Abstract:
In order to study the effect of bridge pre-camber on the comfort of continuous rigid bridge, a number of continuous rigid bridges with main span diameters between 110 m and 200 m were used as research objects. Firstly, the time domain model of the pavement was established using the filtered white noise method, and the levelness of the new bridge deck was simulated by superimposing it with the formed bridge alignment set according to the cosine curve. Secondly, MATLAB / Simlink was used to build the vehicle-road system model. The root means square (RMS) acceleration value was used to evaluate the traffic comfort of the bridge side span and middle span deck. The maximum transient vibration value (MTVV) was used as the evaluation index of the driving comfort in the short time at the peak of the side span. Finally, the influence of the span diameter and design speed on the RMS value of the side and middle spans of the bridge with the empirical method of setting the pre-arch according to the cosine curve was analyzed. The influence of the pre-arch value on the MTVV value at 3L / 8 of the side span were analyzed. The results showed that the RMS values were less than 0. 315 m / s 2 at the side span and mid-span, indicating that the empirical method of setting the pre-arch of the bridge according to the cosine curve did not affect the traffic comfort at the mid-span. The MTVV value at the side span 3L / 8 was greater than 0. 345 m / s 2 in a short period of time, which mean that the peak of the side span was slightly uncomfortable in a short period of time. In order to improve the traffic comfort within the side span, measures were proposed to optimize the bridge deck alignment at 3L / 8 and the top of the side pier based on the leveling layer construction.

参考文献/References:

[1] DILLEN N, ILIEVSKI M, LAW E, et al. Keep calm and ride along: passenger comfort and anxiety as physiological responses to autonomous driving styles[C]∥Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2020: 1-13.

[2] 曹胜语, 马春佳, 郭长江. 考虑行车舒适性简支梁桥允许上拱度分析[J]. 湖南城市学院学报(自然科学版), 2008, 17(4): 7-9.
CAO S Y, MA C J, GUO C J. Arch degree analysis of single beam bridge based on moving vehicle comfortable[J]. Journal of Hunan City University (Natural Science), 2008, 17(4): 7-9.
[3] 钟明全, 阳光, 王旭军, 等. PC板梁徐变上拱对高速行车舒适性的影响分析[J]. 桥梁建设, 2007, 37(6): 26-29.
ZHONG M Q, YANG G, WANG X J, et al. Analysis of influence of creeping camber of PC plate girder bridge on riding comfort of high-speed traveling vehicle[J]. Bridge Construction, 2007, 37(6): 26-29.
[4] 马春佳. 基于行车舒适性的高速公路中小跨径预应力混凝土桥梁设计方法研究[D]. 重庆: 重庆交通大学, 2010.
MA C J. Research on designing method of the medium and small span prestressed concrete highway bridge based on driving comfort[D]. Chongqing: Chongqing Jiaotong University, 2010.
[5] 周小烨. 先简支后桥面连续梁桥车桥耦合振动分析[J]. 土木建筑与环境工程, 2015, 37(增刊1): 57-61.
ZHOU X Y. A vehicle-bridge coupling vibration analysis on bridge girders by simple support design followed by structural continuous design[J]. Journal of Civil, Architectural &Environmental Engineering, 2015, 37(S1): 57-61.
[6] 王旭军, 钟明全, 刘建波, 等. 简支梁桥上拱度对高速行车舒适性影响研究[J]. 重庆交通大学学报(自然科学版), 2007, 26(6): 60-63, 152.
WANG X J, ZHONG M Q, LIU J B, et al. Analysis of high speed driving comfort impacted by deflection upwards of PC bridges[J]. Journal of Chongqing Jiaotong University (Natural Science), 2007, 26(6): 60-63, 152.
[7] 刘世忠, 刘永健, 程高, 等. 公路桥梁车桥耦合振动数值分析方法[J]. 郑州大学学报(工学版), 2014, 35(1): 94-98.
LIU S Z, LIU Y J, CHENG G, et al. Numerical analysis of vehicle-bridge coupling vibration for highway bridges[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(1): 94-98.
[8] DENG L, CAI C S. Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges[J]. Engineering Structures, 2010, 32(1): 21-31.
[9] 李武生, 王贵春. 基于桥面不平顺的车辆舒适性分析[J]. 北京交通大学学报, 2022, 46(1): 98-104.
LI W S, WANG G C. Vehicle ride comfort analysis based on bridge deck with irregular pavement[J]. Journal of Beijing Jiaotong University, 2022, 46(1): 98-104.
[10] 卢凡, 陈思忠. 汽车路面激励的时域建模与仿真[J]. 汽车工程, 2015, 37(5): 549-553.
LU F, CHEN S Z. Modeling and simulation of road surface excitation on vehicle in time domain[J]. Automotive Engineering, 2015, 37(5): 549-553.
[11] 陈洪兴, 何兆益. 基于国际平整度指数IRI的路面不平度仿真研究[J]. 公路, 2008, 53(11): 155-160.
CHEN H X, HE Z Y. A study on simulation of road roughness based on international roughness index[J]. Highway, 2008, 53(11): 155-160.
[12] 殷珺, 陈辛波, 吴利鑫, 等. 滤波白噪声路面时域模拟方法与悬架性能仿真[J]. 同济大学学报(自然科学版), 2017, 45(3): 398-407.
YIN J, CHEN X B, WU L X, et al. Simulation method of road excitation in time domain using filtered white noise and dynamic analysis of suspension[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 398-407.
[13] SOONG M F, RAMLI R, SAIFIZUL A. Between simplicity and accuracy: effect of adding modeling details on quarter vehicle model accuracy[J]. PLoS One, 2017, 12(6): e0179485.
[14] ISO.Mechanical vibration and shock——evaluation of human exposure to wholebody vibration——part 1: general requirements:ISO 2631-1: 1997(E)[S].Geneva:ISO,1997.
[15] 中国国家标准化管理委员会. 汽车平顺性试验方法: GB/T 4970—2009[S]. 北京: 中国标准出版社, 2010.
Standardization Administration of the People′s Republic of China. Test method for smoothness of automobiles: GB/T 4970—2009[S]. Beijing: Standards Press of China, 2010.
[16] 苏曼曼, 张洪亮. 路桥过渡段沥青路面平整度的评价方法[J]. 江苏大学学报(自然科学版), 2018, 39(3): 362-367.
SU M M, ZHANG H L. Roughness evaluation method of asphalt pavement between bridge abutment and approach embankment[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(3): 362-367.
[17] 时刚, 田新涛. 工程卡车行驶引发地面振动特性研究[J]. 郑州大学学报(工学版), 2020, 41(5): 76-81.
SHI G, TIAN X T. Research on ground vibration characteristics caused by engineering truck driving[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 76-81.
[18] 交通运输部公路科学研究院. 公路工程质量检验评定准: JTG F80/1—2017[S].北京:人民交通出版社,2017. 
Research Institute of Highway Ministry of Transport. Inspection and evaluation quality standards for highway engineering: JTG F80/1—2017[S].Beijing:China Communications Press,2017.
[19] 臧继成, 潘正华, 罗君, 等. 超载及调平层厚度对连续刚构桥桥面铺装层受力的影响[J]. 重庆交通大学学报(自然科学版), 2013, 32(6): 1137-1140.
ZANG J C, PAN Z H, LUO J, et al. Effect of overloading and the leveling layer thickness on deck pavement stress of continuous rigid frame bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2013, 32(6): 1137-1140.

相似文献/References:

[1]李杰,陈彬..连续刚构桥顶推力计算与优化分析[J].郑州大学学报(工学版),2013,34(06):85.[doi:10.3969/j.issn.167l一6833.2013.00.021]
 LI JielCHEN Bin.Analysis ofContinuous Rigid FrameBridgeJackingForceCalculation andOptimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(02):85.[doi:10.3969/j.issn.167l一6833.2013.00.021]
[2]葛素娟,李静斌..预应力混凝土连续刚构桥0号块空间分析[J].郑州大学学报(工学版),2006,27(03):1.[doi:10.3969/j.issn.1671-6833.2006.03.001]
 Ge Sujuan,Li Jingbin.Space analysis of Block 0 of prestressed concrete continuous rigid bridge[J].Journal of Zhengzhou University (Engineering Science),2006,27(02):1.[doi:10.3969/j.issn.1671-6833.2006.03.001]

更新日期/Last Update: 2024-03-08