[1] 中华人民共和国国家发展和改革委员会. 智能汽车创 新发展战略[EB / OL] . (2020-02-24) [ 2022-12-24] . https: ∥ www. ndrc. gov. cn / xxgk / zcfb / tz/ 202002 / t20200224_1235917. html. National Development and Reform Commission . Innovative development strategy for intelligent vehicles [ EB / OL] . ( 2020 - 02 - 24 ) [ 2022 - 12 - 24 ] https: ∥ www. ndrc. gov. cn / xxgk / zcfb / tz/ 202002 / t20200224_12 35917. html.
[2] BANSAL M, KRIZHEVSKY A, OGALE A. ChauffeurNet: learning to drive by imitating the best and synthesizing the worst[ EB / OL] . ( 2018 - 12 - 07) [ 2022 - 12 - 24] . https:∥arxiv. org / abs/ 1812. 03079.
[3] 王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动 驾驶车控制算法研究[ J] . 郑州大学学报( 工学版) , 2020, 41(4) : 41-45, 80.
WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(4) : 41-45, 80.
[4] HO J, ERMON S. Generative adversarial imitation learning[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 4572-4580.
[5] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [ C] ∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE, 2020: 11618 -11628.
[6] LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[ C]∥Computer Vision-ECCV 2020: 16th European Conference. New York: ACM, 2020: 541-556.
[7] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [ EB / OL]. ( 2016 - 09 - 09)[2022-12-24]. https:∥arxiv. org / abs/ 1609. 02907.
[8] VELICˇKOVIC ’ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [ EB / OL ] . ( 2017 - 10 - 30 ) [2022-12-24] . https:∥arxiv. org / abs/ 1710. 10903.
[9] 张三川, 马啸. 基于轨迹加权预测的主动避撞安全距 离模型及算法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2022, 43(3) : 104-110.
ZHANG S C, MA X. A safe distance model and algorithm for active collision avoidance based on weighted prediction of trajectory[ J] . Journal of Zhengzhou University(Engineering Science) ,2022, 43(3) : 104-110.
[10] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction [ C]∥IEEE Robotics and Automation Letters. Piscataway: IEEE, 2022: 2716-2723.
[11] KIM B, PARK S H, LEE S, et al. LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents[C]∥2021 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) . Piscataway: IEEE, 2021: 14631-14640.
[12] CHAI Y N, SAPP B, BANSAL M, et al. MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[EB / OL] . ( 2019-10- 12) [ 2022- 12 -24] . https:∥arxiv. org / abs/ 1910. 05449.
[13] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[ EB / OL] . (2021-04-29) [ 2022-12-24] . https:∥arxiv. org / abs/ 2001. 00735.
[14] GILLES T, SABATINI S, TSISHKOU D, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]∥2022 International Conference on Robotics and Automation ( ICRA) . New York: ACM, 2022: 9107-9114.
[15] MESSAOUD K, DEO N, TRIVEDI M M, et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation [ C] ∥2021 IEEE Intelligent Vehicles Symposium ( Ⅳ) . New York: ACM, 2021: 165-170.