[1]王定标,王 帅,张浩然,等.流体拓扑优化的方法及应用综述[J].郑州大学学报(工学版),2023,44(02):1-13.[doi:10.13705/j.issn.1671-6833.2023.02.021]
 WANG Dingbiao,WANG Shuai,ZHANG Haoran,et al.A Review of Methods and Applications for Fluid Topology Optimization[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):1-13.[doi:10.13705/j.issn.1671-6833.2023.02.021]
点击复制

流体拓扑优化的方法及应用综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年02期
页码:
1-13
栏目:
出版日期:
2023-02-27

文章信息/Info

Title:
A Review of Methods and Applications for Fluid Topology Optimization
作者:
王定标12 王 帅12 张浩然12 吴淇涛12 杨崇瑞12 王光辉12
1.郑州大学 机械与动力工程学院,河南 郑州 450001, 2.新能源清洁利用技术与节能装备河南省国际联合实验室,河南 郑州 450001

Author(s):
WANG Dingbiao WANG Shuai ZHANG Haoran WU Qitao YANG Chongrui WANG Guanghui
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, 2.Henan, new energy clean utilization technology and energy -saving equipment Henan International Joint Laboratory, Henan Zhengzhou 450001

关键词:
拓扑优化 流动与传热 拓扑设计变量 CFD 求解器 优化求解器 人工智能 结构优化
Keywords:
topology optimization flow and heat transfer topology design variables CFD solver optimization solver artificial intelligence structural optimization
分类号:
O368;TP391. 7;TK124
DOI:
10.13705/j.issn.1671-6833.2023.02.021
文献标志码:
A
摘要:
流体拓扑优化一项突破性技术,在航空航天、汽车、电子芯片等领域均有广泛的应用前景,但诸多因素制约了它的推广应用。随着增材制造3D打印技术的发展,为拓展流体拓扑优化的应用和研究提供了有效途径,实现相关工业装备的结构轻量化、动力学优化、安全性优化以及性能提升,落实国家“节能降耗、碳达峰碳中和” 战略具有重要意义。借助文献计量工具VOSviewer对Web of Science数据库中流体拓扑优化相关文献进行了梳理和总结流体拓扑优化的理论体系、求解方法、优化方法、以及工程应用,并提出相关建议。首先,与固体拓扑优化相比,流体拓扑优化涉及领域更广、流态特征更多样、数学模型更复杂,因而求解更困难、计算时间更长、计算资源需求更大,是制约流体拓扑优化工程应用的主要因素。其次,较系统阐述了流体拓扑优化的三个环节和关键技术:拓扑设计变量表述方法、CFD模型及求解方法、拓扑优化模型及求解方法,并分析了现有技术的特点和应用场景。同时,对流体拓扑优化的几个应用场景进行了简述。最后,对流体拓扑优化的发展趋势进行了预测和总结,建议进一步加大湍流、共轭传热、流-固-热耦合、流-固-热-质耦合等方面的多学科拓扑优化研究;拓展基于多目标函数的拓扑优化研究;进一步加强与人工智能的深度结合,开发更加稳健成熟的智能CFD求解器、智能优化求解器以及智能流体拓扑优化软件。
Abstract:
Fluid topology optimization is a breakthrough technology, which has broad application prospects in aerospace, automotive, electronic chips and other fields, however, the design of complex structure is difficult to process through the traditional manufacturing technology. With the development of additive manufacturing (3D printing) technology, it could provide an effective way to further expand the application and research of fluid topology optimization, which would of great significance for realizing the structural lightweight, dynamic optimization, safety optimization and performance improvement of related industrial equipment, and implementing the national strategy of “energy conservation and consumption reduction, carbon peak and carbon neutralization”. With the help of the literature metrology tool VOSviewer, were classified and summarized the literature related to fluid topology optimization in the Web of Science database were classified, comprehensively and the theoretical system, solution methods, optimization methods, and engineering applications of fluid topology optimization were expounded systematically, and the related problems were discussed. First of all, compared with solid topology optimization, fluid topology optimization involved more fields, more diverse flow regime characteristics, and more complex mathematical models, so it was more difficult to solve, took longer to calculate, and required more computing resources, which was the main factor restricting the engineering application of fluid topology optimization. Secondly, the three links and key technologies of fluid topology optimization were systematically described: representation method of design variable, CFD model and solution method, topology optimization model and solution method, and the characteristics and application scenarios of existing technologies were analyzed. At the same time, several application scenarios of fluid topology optimization, such as electronic chip heat sink, aircraft, automobile and heat exchanger, were briefly described. Finally, the development trend of fluid topology optimization was predicted and summarized. It was suggested that the multidisciplinary topology optimization research on turbulence, conjugate heat transfer, fluid-solid-heat coupling, fluid-solid-heat-mass coupling should be further strengthened; the research of topology optimization based on multi-objective function should be expanded; the deep combination with artificial intelligence should be further strengthened, more robust and mature intelligent CFD solver and intelligent optimization solver, and even intelligent software of fluid topology optimization should be developed.

参考文献/References:

[1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [ J] . Computer Methods in Applied Mechanics and Engineering, 1988, 71(2) : 197-224.

[2] BORRVALL T, PETERSSON J. Topology optimization of fluids in Stokes flow[ J] . International Journal for Numerical Methods in Fluids, 2003, 41(1) : 77-107.
[3] HAERTEL J H K, ENGELBRECHT K, LAZAROV B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model [ J ] . International Journal of Heat and Mass Transfer, 2018, 121: 1073-1088.
[4] LUNDGAARD C, ALEXANDERSEN J, ZHOU M D, et al. Revisiting density-based topology optimization for fluid-structure-interaction problems[ J] . Structural and Multidisciplinary Optimization, 2018, 58(3) : 969-995.
[5] SUN S C, LIEBERSBACH P, QIAN X P. Large scale 3D topology optimization of conjugate heat transfer[ C] / / 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ( ITherm) . Piscataway:IEEE, 2019: 1-6. 
[6] ZENG T, WANG H,YANG M Z,et al. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model[ J] . International Journal of Heat and Mass Transfer, 2020, 154: 119681.
[7] KUMAR P, LANGELAAR M. Topological synthesis of flidic pressure-actuated robust compliant mechanisms [ J ]. Mechanism and Machine Theory, 2022, 174: 104871.
[8] ALEXANDERSEN J. A detailed introduction to densitybased topology optimisation of fluid flow problems with implementation in MATLAB[EB / OL]. (2022-07-19)[2022 -10-11]https: / / doi. org / 10. 48550 / arXiv. 2207. 13695
 [9] KUMAR P. Towards topology optimization of pressuredriven soft robots [ C] / / Conference on Mechanisms and Machine Science . Cham:Springer,2022:19-30. 
[10] KREISSL S, PINGEN G, MAUTE K. Optimal layout design for unsteady flows [ C] / / 13th AIAA / ISSMO Multidisciplinary Analysis Optimization Conference. Reston: AIAA, 2010: 9400.
 [11] DENG Y, LIU Z, ZHANG P, et al. Topology optimization of unsteady incompressible Navier-Stokes flows [ J] . Journal of Computational Physics, 2011, 230(17) : 6688 -6708.
[12] PINGEN G, MAUTE K. Optimal design for non-Newtonian flows using a topology optimization approach [ J ] . Computers & Mathematics With Applications, 2010, 59 (7) : 2340-2350. 
[13] MATSUMORI T, KONDOH T, KAWAMOTO A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[ J] . Structural and Multidisciplinary Optimization, 2013, 47(4) : 571-581.
 [14] ALEXANDERSEN J, AAGE N, ANDREASEN C S, et al. Topology optimisation for natural convection problems [ J] . International Journal for Numerical Methods in Fluids, 2014, 76(10) : 699-721. 
[15] LIU G, GEIER M, LIU Z Y, et al. Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method[ J] . Computers & Mathematics with Applications, 2014, 68 ( 10 ) : 1374-1392. 
[16] ZHOU S, LI Q. A variational level set method for the topology optimization of steady-state Navier-Stokes flow [ J] . Journal of Computational Physics, 2008, 227(24) : 10178-10195.
 [17] CHALLIS V J, GUEST J K. Level set topology optimization of fluids in Stokes flow[ J] . International Journal for Numerical Methods in Engineering, 2009, 79(10) : 1284 -1308. 
[18] DUAN XIAN BAO, QIAN FU CAI, QIN XIN QIANG. Level set method for topological optimization of the naiverstokes fluid flow[ J] . Applied Mechanics and Materials, 2012, 182 / 183: 1668-1672. 
[19] DENG Y B, ZHANG P, LIU Y S, et al. Optimization of unsteady incompressible Navier-Stokes flows using variational level set method[ J] . International Journal for Nmerical Methods in Fluids, 2013, 71(12) : 1475-1493. 
[20] DUAN X B, DANG Y, LU J X. A variational level set method for topology optimization problems in navier-stokes flow[ J] . IEEE Access, 2020, 8: 48697-48706.
 [21] NEOFYTOU A, YU F M, ZHANG L, et al. Level set topology optimization for fluid-structure interactions [ C] / / AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 2091. 
[22] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations [ J ] . Journal of Computational Physics, 1988, 79(1) : 12-49.
 [23] YONEKURA K, KANNO Y. Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function [ J] . Japan Journal of Industrial and Applied Mathematics, 2017, 34(2) : 611-632. 
[24] VILLANUEVA C H, MAUTE K. CutFEM topology optimization of 3D laminar incompressible flow problems[ J] . Computer Methods in Applied Mechanics and Engineering, 2017, 320: 444-473.
 [25] ZHANG B, LIU X M. Topology optimization study of arterial bypass configurations using the level set method [ J ] . Structural and Multidisciplinary Optimization, 2015, 51(3) : 773-798.
 [26] ZHANG B, LIU X M, SUN J J. Topology optimization design of non-Newtonian roller-type viscous micropumps [ J ] . Structural and Multidisciplinary Optimization, 2016, 53(3) : 409-424. 
[27] JENKINS N, MAUTE K. An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 54 ( 5 ) : 1191 -1208.
 [28] QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimisation ( ESO) using a bidirectional algorithm[ J ] . Engineering Computations, 1998, 15 ( 8 ) : 1031-1048. 
[29] YANG X Y, XIE Y M, STEVEN G P, et al. Bidirectional evolutionary method for stiffness optimization [ J ] . AIAA Journal, 1999, 37(11) : 1483-1488. 
[30] 谢亿 民, 黄 晓 东, 左 志 豪, 等. 渐 进 结 构 优 化 法 (ESO)和双 向 渐 进 结 构 优 化 法 ( BESO) 的 近 期 发 展 [ J] . 力学进展, 2011, 41(4) : 462-471. 
XIE Y M, HUANG X D, ZUO Z H, et al. Recent developments of evolutionary structural optimization ( ESO ) and bidirectional evolutionary structural optimization (BESO) methods [ J ] . Advances in Mechanics, 2011, 41 (4) : 462-471.
 [31] ROZVANY G I N. A critical review of established methods of structural topology optimization[ J] . Structural and Multidisciplinary Optimization, 2009, 37(3) : 217-237.
 [32] CUI N N, HUANG S P, DING X Y. An improved strategy for genetic evolutionary structural optimization [ J ] . Advances in Civil Engineering, 2020, 2020: 1-9. 
[33] ZHUANG Z, XIE Y M, LI Q,et al. Body-fitted bi-directional evolutionary structural optimization using nonlinear diffusion regularization [ J ] . Computer Methods in Applied Mechanics and Engineering, 2022, 396: 115114. 
[34] PICELLI R, VICENTE W M, PAVANELLO R. Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads[ J]. Finite Elements in Analysis and Design, 2017, 135: 44-55.
 [35] SUI Y, PENG X. The improvement for the ICM method of structural topology optimization [ J] . Acta Mechanica Sinica, 2005, 37(2) :190-198.
 [36] LONG K, WANG X, GU X G. Concurrent topology optimization for minimization of total mass considering loadcarrying capabilities and thermal insulation simultaneously [ J] . Acta Mechanica Sinica, 2018, 34(2) : 315-326. 
[37] LI X, ZHAO Q, LONG K, et al. Multi-material topology optimization of transient heat conduction structure with functional gradient constraint[ J] . International Communications in Heat and Mass Transfer, 2022, 131: 105845.
 [38] YE H L, LI Y M, ZHANG Y M, et al. Fluid-structure interaction dynamics for laminated plate \ shell topology optimization [ J ] . Applied Mechanics and Materials, 2013, 444 / 445: 55-59. 
[39] YOON G H. Topology optimization for turbulent flow with Spalart-Allmaras model [ J ] . Computer Methods in Applied Mechanics and Engineering, 2016, 303: 288-311. 
[40] DILGEN C B, DILGEN S B, FUHRMAN D R,et al. Topology optimization of turbulent flows [ J ] . Computer Methods in Applied Mechanics and Engineering, 2018, 331: 363-393.
 [41] TAWK R, GHANNAM B, NEMER M. Topology optimization of heat and mass transfer problems in two fluids— one solid domains[ J] . Numerical Heat Transfer, Part B: Fundamentals, 2019, 76(3) : 130-151.
 [42] MEKKI B S, LANGER J, LYNCH S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications[ J] . International Journal of Heat and Mass Transfer, 2021, 170: 121002. 
[43] PIETROPAOLI M, GAYMANN A, MONTOMOLI F. Three-dimensional fluid topology optimization and validation of a heat exchanger with turbulent flow [ EB / OL ] (2021 - 01 - 11) [ 2022 - 09 - 16 ]. https: / / doi. org / 10. 1115 / GT2020-14479.  
[44] KONTOLEONTOS E A, PAPOUTSIS-KIACHAGIAS E M, ZYMARIS A S, et al. Adjoint-based constrained topology optimization for viscous flows, including heat transfer[ J ] . Engineering Optimization, 2013, 45 ( 8 ) : 941-961.
 [45] COFFIN P, MAUTE K. A level-set method for steadystate and transient natural convection problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 53 (5) : 1047-1067. 
[46] LIN Y, ZHU W D, LI J X, et al. A stabilized parametric level-set XFEM topology optimization method for thermalfluid problem [ J ] . International Journal for Numerical Methods in Engineering, 2022, 123(4) : 924-952. 
[47] YAJI K, YAMADA T, YOSHINO M, et al. A level setbased topology optimization using the lattice-boltzmann method[ J ] . Transactions of The Japan Society of Mechanical Engineers Series C, 2013, 79 ( 802 ) : 2152 -2163.
 [48] KENTARO Y, TAKAYUKI Y, MASATO Y, et al. Topology optimization in thermal-fluid flow using the lattice Boltzmann method[ J] . Journal of Computational Physics, 2016, 307: 355-377. 
[49] SEBASTIAN N, OLE S, BOYAN L et al. Topology optimization of unsteady flow problems using the lattice Boltzmann method [ J ] . Journal of Computational Physics, 2016, 307: 291-307.
 [50] FLORIAN D, YANN F, CHRISTOPHE J et al. Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method [ J] . Journal of Computational Physics, 2018, 365: 376-404. 
[51] KLEMENS F, FORSTER B, DORN M,et al. Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods [ J] . Computers & Mathematics with Applications, 2020, 79(1) : 17-33. 
[52] PINGEN G, WAIDMANN M, EVGRAFOV A, et al. A parametric level-set approach for topology optimization of flow domains [ J] . Structural and Multidisciplinary Optimization, 2010, 41(1) : 117-131. 
[53] YODONO T, YAJI K, YAMADA T, et al. Topology optimization for the elastic field using the lattice Boltzmann method [ J ] . Computers & Mathematics with Applications, 2022, 110: 123-134. 
[54] FLIEGE J, VAZ A I F. A method for constrained multiobjective optimization based on SQP techniques[ J] . SIAM Journal on Optimization, 2016, 26(4) : 2091-2119. 
[55] ZHOU M D, ALEXANDERSEN J, SIGMUND O, et al. Industrial application of topology optimization for combined conductive and convective heat transfer problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 54(4) : 1045-1060.
[56] SAVIERS K R, RANJAN R, MAHMOUDI R. Design and validation of topology optimized heat exchangers [ C ] / / AIAA Scitech 2019 Forum. California. Reston: AIAA, 2019: 1465. 
[57] CAO X J, WANG Y F. Optimized design of thermal insulation and fluid drag reduction for circumferentially grooved annular seal with MMA and perturbation methods [ J ] . Structural and Multidisciplinary Optimization, 2020, 62(2) : 873-914. 
[58] SASAKI Y, SATO Y, YAMADA T, et al. Topology optimization for fluid flows using the MPS method incorporating the level set method [ J ] . Computers & Fluids, 2019, 188: 86-101.
 [59] YOSHIMURA M, SHIMOYAMA K, MISAKA T, et al. Topology optimization of fluid problems using genetic algorithm assisted by the Kriging model [ J] . International Journal for Numerical Methods in Engineering, 2017, 109 (4) : 514-532. 
[60] SIGMUND O. On the usefulness of non-gradient approaches in topology optimization [ J] . Structural and Multidisciplinary Optimization, 2011, 43(5) : 589-596.
 [61] DEDE E M. Optimization and design of a multipass branching microchannel heat sink for electronics cooling [ J ] . Journal of Electronic Packaging, 2012, 134 (4) : 041001.
 [62] 裴元帅, 王定标, 王光辉, 等. 恒定压降下电子元件 热沉 的 拓 扑 优 化 设 计 [ J] . 低 温 与 超 导, 2020, 48 (1) : 56-61. 
PEI Y S, WANG D B, WANG G H, et al. Topology optimization design of electronic component heat sink under constant pressure drop[ J] . Cryogenics & Superconductivity, 2020, 48(1) : 56-61.
 [63] 李含灵, 蓝代彦, 张显明, 等. 自然对流散热齿的拓扑 优化[J]. 工程热物理学报, 2022, 43(5): 1357-1361. 
LI H L, LAN D Y, ZHANG X M, et al. Topology optimization of the natural convection fin heat sink[ J] . Journal of Engineering Thermophysics, 2022, 43 ( 5) : 1357 -1361.
 [64] ZOU A, CHUAN R, QIAN F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[ J] . Applied Thermal Engineering, 2022, 207: 118128. 
[65] YODONO T, YAJI K, YAMADA T. Pseudo 3D topology optimization of microchannel heat sink with an auxiliary objective [ J ] . International Journal of Heat and Mass Transfer, 2022, 187: 122526. 
[66] GAYMANN A, MONTOMOLI F, PIETROPAOLI M. Fluid topology optimization: bio-inspired valves for air- 第 2 期 王定标,等:流体拓扑优化的方法及应用综述 13 craft engines[ J] . International Journal of Heat and Fluid Flow, 2019, 79: 108455. 
[67] MUNK D J, VERSTRAETE D, VIO G A. Effect of fluidthermal-structural interactions on the topology optimization of a hypersonic transport aircraft wing[ J] . Journal of Fluids and Structures, 2017, 75: 45-76. 
[68] ORBAY R, TOKAT A, BECCIANI M, et al. Multiobjectively optimized PMSynRM cooling for increased vehicle efficiency[C] / / 47th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2021: 1-6.
 [69] HOGHOJ L C, NORHAVE D R, ALEXANDERSEN J, et al. Topology optimization of two fluid heat exchangers [ J] . International Journal of Heat and Mass Transfer, 2020, 163: 120543.
 [70] KOBAYASHI H, YAJI K, YAMASAKI S, et al. Topology design of two-fluid heat exchange[ J] . Structural and Multidisciplinary Optimization, 2021, 63(2) : 821-834. 

[71] LIU A, WANG G, WANG D,et al. Study on the thermal and hydraulic performance of fin-and-tube heat exchanger based on topology optimization[ J] . Applied Thermal Engineering, 2021, 197: 117380.

相似文献/References:

[1]杜鹏.大型箱体零件结构拓扑优化设计研究[J].郑州大学学报(工学版),2016,37(02):82.[doi:10.3969/j.issn.1671-6833.201505028]
 Qin Dongchen,Du Peng.A Research for Structural Design of Large-scale Box Parts Based on Topology Optimization[J].Journal of Zhengzhou University (Engineering Science),2016,37(02):82.[doi:10.3969/j.issn.1671-6833.201505028]
[2]雷正保,刘助春,廖卓.纯电动汽车白车身耐撞性拓扑优化设计方法[J].郑州大学学报(工学版),2016,37(05):77.[doi:10.13705/j.issn.1671-6833.2016.05.015]
 Lei Zhengbao,Liu Zhuchun,Liao Zhuo.Crashworthiness Topology Optimization Method of Pure Electric Car BIW[J].Journal of Zhengzhou University (Engineering Science),2016,37(02):77.[doi:10.13705/j.issn.1671-6833.2016.05.015]
[3]侯俊剑,房占鹏,何文斌.基于位移响应最小化的约束阻尼结构优化设计[J].郑州大学学报(工学版),2017,38(03):87.[doi:10.13705/j.issn.1671-6833.2016.06.012]
 Hou Junjian,Fang Zhanpeng,He Wenbin.Structure Optimization Design of Constrained Layer Damping Structures Based on Dynamic Displacement Response[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):87.[doi:10.13705/j.issn.1671-6833.2016.06.012]

更新日期/Last Update: 2023-02-25