[1] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检 测算法综述[ J] . 计算机工程, 2022, 48(7) : 1-12. LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms[ J] . Computer Engineering, 2022, 48(7) : 1-12. [2] 包晓敏, 王思琪. 基于深度学习的目标检测算法综述 [ J] . 传感器与微系统, 2022, 41(4) :5-9. BAO X M, WANG S Q. Survey of object detection algorithm based on deep learning[ J] . Transducer and Microsystem Technologies, 2022, 41(4) :5-9.
[3] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法 综述 [ J ] . 中 国 图 象 图 形 学 报, 2020, 25 ( 4 ) 629-654. ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection [ J ] . Journal of Image and Graphics, 2020, 25(4) : 629-654.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [ C ] ∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[5] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[ J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9) : 1904-1916.
[6] GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision ( ICCV) . Piscataway: IEEE, 2016: 1440-1448.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[C]∥IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE, 2016: 1137-1149.
[8] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [ C ] ∥2017 IEEE International Conference on Computer Vision ( ICCV ) . Piscataway: IEEE, 2017: 2980-2988.
[9] CHEN L K, YE F Y, RUAN Y D, et al. An algorithm for highway vehicle detection based on convolutional neural network [ J] . EURASIP Journal on Image and Video Processing, 2018, 2018(1) : 1-7.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [ C ] ∥ European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [ C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE, 2017: 6517-6525.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB / OL] . ( 2018 - 04 - 08) [ 2022 - 12 - 23] . https:∥arxiv. org / pdf / 1804. 02767v1.
[15] ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9259-9266.
[16] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [EB / OL] . (2020- 09-11) [2022-12-23] . https:∥arxiv. org / pdf / 1905. 11 946v5.
[17] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway: IEEE, 2020: 10778-10787. [18] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [ EB / OL] . ( 2020 - 04 - 23) [ 2022 - 12 - 23] . https:∥arxiv. org / abs/ 2004. 10934.
[19] JOCHER G. YOLOv5 [EB / OL]. (2020-06-17) [2022- 12-23]. https:∥github. com / ultralytics/ YOLOv5.
[20] ZHANG C X, KANG F, WANG Y X. An improved apple object detection method based on lightweight YOLOv4 in complex backgrounds [ J ] . Remote Sensing, 2022, 14 (17) : 4150.
[21] HONG W W, MA Z H, YE B L, et al. Detection of green asparagus in complex environments based on the improved YOLOv5 algorithm[J]. Sensors, 2023, 23(3): 1562.
[22] 贾云飞, 郑红木, 刘闪亮. 基于 YOLOv5s 的金属制品 表面缺陷的轻量化算法研究[ J] . 郑州大学学报( 工 学版) , 2022, 43(5) : 31-38. JIA Y F, ZHENG H M, LIU S L. Lightweight surface defect detection method of metal products based on YOLOv5s [ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(5) : 31-38.
[23] ZHANG H, ZU K K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network [ C ] ∥ Asian Conference on Computer Vision. Cham: Springer, 2023: 541-557.
[24] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1577-1586.