[1]张 震,张思源,田鸿朋.基于改进多因子优化蝙蝠算法的网络入侵检测方法[J].郑州大学学报(工学版),2024,45(05):52-60.[doi:10.13705/j.issn.1671-6833.2024.05.015]
 ZHANG Zhen,ZHANG Siyuan,TIAN Hongpeng.Network Intrusion Detection Method Based on Improved Multi-factorialOptimization Bat Algorithm[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):52-60.[doi:10.13705/j.issn.1671-6833.2024.05.015]
点击复制

基于改进多因子优化蝙蝠算法的网络入侵检测方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年05期
页码:
52-60
栏目:
出版日期:
2024-08-08

文章信息/Info

Title:
Network Intrusion Detection Method Based on Improved Multi-factorialOptimization Bat Algorithm
文章编号:
1671-6833(2024)05-0052-09
作者:
张 震 张思源 田鸿朋
郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
ZHANG Zhen ZHANG Siyuan TIAN Hongpeng
School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
入侵检测 网络安全 特征选择 蝙蝠算法 多因子优化
Keywords:
intrusion detection cyber security feature selection bat algorithm multi-factorial optimization
分类号:
TP181
DOI:
10.13705/j.issn.1671-6833.2024.05.015
文献标志码:
A
摘要:
针对高维网络数据存在大量冗余和不相关的特征导致入侵检测准确率低的问题,提出了一种改进的多因子优化蝙蝠算法( IMFBA)用于数据特征选择,筛选出具有最大信息量的特征子集,提高网络入侵检测精度。 首先,在多因子优化框架下设计全局特征选择任务和局部特征选择任务,并通过基于蝙蝠算法所设计的选型交配和垂直文化传播算子实现不同任务间的信息共享,从而帮助全局特征选择任务更快锁定最优解空间,提高算法收敛速度和稳定性。 其次,通过将反向学习策略和差分进化引入蝙蝠算法,重新设计算法初始解选择阶段及个体更新过程,弥补其缺少突变机制的不足,增强解的多样性,帮助算法摆脱局部最优。 最后,提出一种自适应参数调整策略,根据潜在最优解质量决定其指导个体更新的权重,避免在多任务特征选择过程中出现知识负迁移现象,实现全局搜索与局部开发之间的平衡。 实验结果表明:IMFBA 所选特征子集对网络入侵数据集 KDD CUP 99 和 NSL-KDD 分类结果的准确率分别为 95. 37%和 85. 14%,相较于完整特征集提升了 3. 01 百分点和 9. 78 百分点。 IMFBA 算法能选择更高质量特征子集并提升网络入侵检测准确率。
Abstract:
In addressing the challenge of diminished intrusion detection accuracy resulting from the abundance ofredundant and irrelevant features in high-dimensional network data, an improved multi-factorial optimization bat algorithm ( IMFBA) was introduced for precise data feature selection, with the ultimate goal of improving network intrusion detection accuracy. Within the multi-factorial optimization framework, global and local feature selectiontasks were formulated. Information exchange between these tasks was facilitated by selection and vertical culturaltransmission operators, strategically designed based on the bat algorithm. The global feature selection task was accelerated in identifying optimal solution spaces, thereby enhancing the algorithm′s convergence speed and stability.By incorporating the reverse learning strategy and differential evolution into the bat algorithm, the initial solution selection stage and individual updating process were refined to address the absence of a mutation mechanism, fostering solution diversity and aiding the algorithm in escaping local optima. An adaptive parameter adjustment strategywas introduced, determining weightings for guiding individual updates based on potential optimal solution quality.This could mitigate the risk of knowledge negative transfer during multi-task feature selection, achieving a balancebetween global exploration and local exploitation. The feature subsets selected by IMFBA demonstrate classificationaccuracy of 95. 37% and 85. 14% on the KDD CUP 99 and NSL-KDD intrusion detection datasets, respectively.This reflected increased by 3. 01 percentage points and 9. 78 percentage points compared to the complete dataset.Experiment results confirm the efficacy of EMFBA in selecting higher-quality feature subsets and, consequently,enhancing network intrusion detection accuracy.

参考文献/References:

[1] 张昊, 张小雨, 张振友, 等. 基于深度学习的入侵检测模型综述[ J] . 计算机工程与应用, 2022, 58( 6) :17-28.

ZHANG H, ZHANG X Y, ZHANG Z Y, et al. Summaryof intrusion detection models based on deep learning[ J] .Computer Engineering and Applications, 2022, 58 ( 6) :17-28.
[2] 刘翔宇, 芦天亮, 杜彦辉, 等. 基于特征选择的物联网轻量级入侵检测方法[ J] . 信息网络安全, 2023, 23(1) : 66-72.
LIU X Y, LU T L, DU Y H, et al. Lightweight IoT intrusion detection method based on feature selection [ J] .Netinfo Security, 2023, 23(1) : 66-72.
[3] BOMMERT A, SUN X D, BISCHL B, et al. Benchmarkfor filter methods for feature selection in high-dimensionalclassification data [ J] . Computational Statistics & DataAnalysis, 2020, 143: 106839.
[4] KHAIRE U M, DHANALAKSHMI R. Stability of featureselection algorithm: a review [ J] . Journal of King SaudUniversity-Computer and Information Sciences, 2022, 34(4) : 1060-1073.
[5] 王艳丽, 梁静, 薛冰, 等. 基于进化计算的特征选择方法研究概述 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2020,41(1) : 49-57.
WANG Y L, LIANG J, XUE B, et al. Research on evolutionary computation for feature selection[ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(1) : 49-57.
[6] SHAFIQ M, TIAN Z H, BASHIR A K, et al. CorrAUC:a malicious bot-IoT traffic detection method in IoT network using machine-learning techniques[ J] . IEEE Internet of Things Journal, 2021, 8(5) : 3242-3254.
[7] NGUYEN B H, XUE B, ANDREAE P, et al. A new binary particle swarm optimization approach: momentumand dynamic balance between exploration and exploitation[ J] . IEEE Transactions on Cybernetics, 2021, 51( 2) :589-603.
[8] 李雯婷, 韩迪, 叶符明. 基于改进蚱蜢优化算法的特征选择机制[ J] . 计算机工程与设计, 2022, 43( 11) :3168-3176.
LI W T, HAN D, YE F M. Feature selection mechanismbased on improved grasshopper optimization algorithm[ J] . Computer Engineering and Design, 2022, 43(11) :3168-3176.
[9] 林达坤, 黄世国, 林燕红, 等. 基于差分进化和森林优化混 合 的 特 征 选 择 [ J] . 小 型 微 型 计 算 机 系 统,2019, 40(6) : 1210-1214.
LIN D K, HUANG S G, LIN Y H, et al. Feature selection based on hybrid differential evolution and forest optimization [ J ] . Journal of Chinese Computer Systems,2019, 40(6) : 1210-1214.
[10] 崔雪婷, 李颖, 范嘉豪. 全局混沌蝙蝠优化算法[ J] .东北大学 学 报 ( 自 然 科 学 版) , 2020, 41 ( 4) : 488 -491, 498.
CUI X T, LI Y, FAN J H. Global chaotic bat optimization algorithm [ J ] . Journal of Northeastern University(Natural Science) , 2020, 41(4) : 488-491, 498.
[11] 徐国天, 刘猛猛. 基于改进哈里斯鹰算法同步优化特征选择 的 恶 意 软 件 检 测 方 法 [ J] . 信 息 网 络 安 全,2021, 21(12) : 9-18.
XU G T, LIU M M. Malware detection method based onimproved Harris Hawks optimization synchronization optimization feature selection [ J] . Netinfo Security, 2021,21(12) : 9-18.
[12] LI J Q, ZHAO Z F, LI R P, et al. AI-based two-stageintrusion detection for software defined IoT networks[ J] .IEEE Internet of Things Journal, 2019, 6 ( 2 ) :2093-2102.
[13] ABBASI M S, AL-SAHAF H, MANSOORI M, et al. Behavior-based ransomware classification: a particle swarmoptimization wrapper-based approach for feature selection[ J] . Applied Soft Computing, 2022, 121: 108744.
[14] YI J, ZHANG W, BAI J R, et al. Multifactorial evolutionary algorithm based on improved dynamical decomposition for many-objective optimization problems[ J] . IEEETransactions on Evolutionary Computation, 2022, 26(2) : 334-348.
[15] YANG X S. A new metaheuristic bat-inspired algorithm[M]∥GONZÁLEZ J R, PELTA D A, CRUZ C, et al.Nature inspired cooperative strategies for optimization.Berlin: Springer, 2010: 65-74.
[16] YE Y, ZHAO X J, XIONG L. An improved bat algorithmwith velocity weight and curve decreasing[ J] . The Journal of Supercomputing, 2022, 78(10) : 12461-12475.
[17] YU H L, ZHAO N N, WANG P J, et al. Chaos-enhanced synchronized bat optimizer [ J] . Applied Mathematical Modelling, 2020, 77: 1201-1215.
[18] BANGYAL W H, HAMEED A, AHMAD J, et al. Newmodified controlled bat algorithm for numerical optimization problem [ J ] . Computers, Materials & Continua,2022, 70(2) : 2241-2259.
[19] MIRJALILI S, MIRJALILI S M, YANG X S. Binary batalgorithm [ J ] . Neural Computing and Applications,2014, 25(3) : 663-681.
[20] GUPTA A, ONG Y S, FENG L. Multifactorial evolution:toward evolutionary multitasking [ J] . IEEE Transactionson Evolutionary Computation, 2016, 20(3) : 343-357.
[21] FENG L, ZHOU W, ZHOU L, et al. An empirical studyof multifactorial PSO and multifactorial DE [ C ] ∥2017IEEE Congress on Evolutionary Computation ( CEC ) .Piscataway: IEEE, 2017: 921-928.
[22] OSABA E, MARTINEZ A D, GALVEZ A, et al. DMFEA-Ⅱ: an adaptive multifactorial evolutionary algorithmfor permutation-based discrete optimization problems[C]∥Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. NewYork: ACM, 2020:1690-1696.
[23] YANG Q, CHEN W N, GU T L, et al. An adaptive stochastic dominant learning swarm optimizer for high-dimensional optimization[ J] . IEEE Transactions on Cybernetics, 2022, 52(3) : 1960-1976.
[24] TIZHOOSH H R. Opposition-based learning: a newscheme for machine intelligence [ C]∥International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce(CIMCA-IAWTIC′06) . Piscataway: IEEE, 2005: 695-701.
[25] DAVAHLI A, SHAMSI M, ABAEI G. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoTwireless networks [ J ] . Journal of Ambient Intelligenceand Humanized Computing, 2020, 11(11) : 5581-5609.
[26] TAVALLAEE M, BAGHERI E, LU W, et al. A detailedanalysis of the KDD CUP 99 data set [ C]∥2009 IEEESymposium on Computational Intelligence for Security andDefense Applications. Piscataway: IEEE, 2009: 1-6.
[27] EWEES A A, GAHEEN M A, YASEEN Z M, et al.Grasshopper optimization algorithm with crossover operators for feature selection and solving engineering problems[ J] . IEEE Access, 2022, 10: 23304-23320.

相似文献/References:

[1]张玉凤,翟光群..Windows XP SP2防火墙技术及应用[J].郑州大学学报(工学版),2006,27(03):85.[doi:10.3969/j.issn.1671-6833.2006.03.020]
 ZHANG Yufeng,Zhai Guangqun.Windows XP SP2 firewall technology and applications[J].Journal of Zhengzhou University (Engineering Science),2006,27(05):85.[doi:10.3969/j.issn.1671-6833.2006.03.020]
[2]张 震,周一成,田鸿朋.基于空间特征和生成对抗网络的网络入侵检测[J].郑州大学学报(工学版),2024,45(06):40.[doi:10.13705/j.issn.1671-6833.2024.06.001]
 ZHANG Zhen,ZHOU Yicheng,TIAN Hongpeng.Network Intrusion Detection Based on Spatial Features and GenerativeAdversarial Networks[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):40.[doi:10.13705/j.issn.1671-6833.2024.06.001]

更新日期/Last Update: 2024-09-02