ZHANG H, ZHANG X Y, ZHANG Z Y, et al. Summaryof intrusion detection models based on deep learning[ J] .Computer Engineering and Applications, 2022, 58 ( 6) :17-28.
[2] 刘翔宇, 芦天亮, 杜彦辉, 等. 基于特征选择的物联网轻量级入侵检测方法[ J] . 信息网络安全, 2023, 23(1) : 66-72.
LIU X Y, LU T L, DU Y H, et al. Lightweight IoT intrusion detection method based on feature selection [ J] .Netinfo Security, 2023, 23(1) : 66-72.
[3] BOMMERT A, SUN X D, BISCHL B, et al. Benchmarkfor filter methods for feature selection in high-dimensionalclassification data [ J] . Computational Statistics & DataAnalysis, 2020, 143: 106839.
[4] KHAIRE U M, DHANALAKSHMI R. Stability of featureselection algorithm: a review [ J] . Journal of King SaudUniversity-Computer and Information Sciences, 2022, 34(4) : 1060-1073.
[5] 王艳丽, 梁静, 薛冰, 等. 基于进化计算的特征选择方法研究概述 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2020,41(1) : 49-57.
WANG Y L, LIANG J, XUE B, et al. Research on evolutionary computation for feature selection[ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(1) : 49-57.
[6] SHAFIQ M, TIAN Z H, BASHIR A K, et al. CorrAUC:a malicious bot-IoT traffic detection method in IoT network using machine-learning techniques[ J] . IEEE Internet of Things Journal, 2021, 8(5) : 3242-3254.
[7] NGUYEN B H, XUE B, ANDREAE P, et al. A new binary particle swarm optimization approach: momentumand dynamic balance between exploration and exploitation[ J] . IEEE Transactions on Cybernetics, 2021, 51( 2) :589-603.
[8] 李雯婷, 韩迪, 叶符明. 基于改进蚱蜢优化算法的特征选择机制[ J] . 计算机工程与设计, 2022, 43( 11) :3168-3176.
LI W T, HAN D, YE F M. Feature selection mechanismbased on improved grasshopper optimization algorithm[ J] . Computer Engineering and Design, 2022, 43(11) :3168-3176.
[9] 林达坤, 黄世国, 林燕红, 等. 基于差分进化和森林优化混 合 的 特 征 选 择 [ J] . 小 型 微 型 计 算 机 系 统,2019, 40(6) : 1210-1214.
LIN D K, HUANG S G, LIN Y H, et al. Feature selection based on hybrid differential evolution and forest optimization [ J ] . Journal of Chinese Computer Systems,2019, 40(6) : 1210-1214.
[10] 崔雪婷, 李颖, 范嘉豪. 全局混沌蝙蝠优化算法[ J] .东北大学 学 报 ( 自 然 科 学 版) , 2020, 41 ( 4) : 488 -491, 498.
CUI X T, LI Y, FAN J H. Global chaotic bat optimization algorithm [ J ] . Journal of Northeastern University(Natural Science) , 2020, 41(4) : 488-491, 498.
[11] 徐国天, 刘猛猛. 基于改进哈里斯鹰算法同步优化特征选择 的 恶 意 软 件 检 测 方 法 [ J] . 信 息 网 络 安 全,2021, 21(12) : 9-18.
XU G T, LIU M M. Malware detection method based onimproved Harris Hawks optimization synchronization optimization feature selection [ J] . Netinfo Security, 2021,21(12) : 9-18.
[12] LI J Q, ZHAO Z F, LI R P, et al. AI-based two-stageintrusion detection for software defined IoT networks[ J] .IEEE Internet of Things Journal, 2019, 6 ( 2 ) :2093-2102.
[13] ABBASI M S, AL-SAHAF H, MANSOORI M, et al. Behavior-based ransomware classification: a particle swarmoptimization wrapper-based approach for feature selection[ J] . Applied Soft Computing, 2022, 121: 108744.
[14] YI J, ZHANG W, BAI J R, et al. Multifactorial evolutionary algorithm based on improved dynamical decomposition for many-objective optimization problems[ J] . IEEETransactions on Evolutionary Computation, 2022, 26(2) : 334-348.
[15] YANG X S. A new metaheuristic bat-inspired algorithm[M]∥GONZÁLEZ J R, PELTA D A, CRUZ C, et al.Nature inspired cooperative strategies for optimization.Berlin: Springer, 2010: 65-74.
[16] YE Y, ZHAO X J, XIONG L. An improved bat algorithmwith velocity weight and curve decreasing[ J] . The Journal of Supercomputing, 2022, 78(10) : 12461-12475.
[17] YU H L, ZHAO N N, WANG P J, et al. Chaos-enhanced synchronized bat optimizer [ J] . Applied Mathematical Modelling, 2020, 77: 1201-1215.
[18] BANGYAL W H, HAMEED A, AHMAD J, et al. Newmodified controlled bat algorithm for numerical optimization problem [ J ] . Computers, Materials & Continua,2022, 70(2) : 2241-2259.
[19] MIRJALILI S, MIRJALILI S M, YANG X S. Binary batalgorithm [ J ] . Neural Computing and Applications,2014, 25(3) : 663-681.
[20] GUPTA A, ONG Y S, FENG L. Multifactorial evolution:toward evolutionary multitasking [ J] . IEEE Transactionson Evolutionary Computation, 2016, 20(3) : 343-357.
[21] FENG L, ZHOU W, ZHOU L, et al. An empirical studyof multifactorial PSO and multifactorial DE [ C ] ∥2017IEEE Congress on Evolutionary Computation ( CEC ) .Piscataway: IEEE, 2017: 921-928.
[22] OSABA E, MARTINEZ A D, GALVEZ A, et al. DMFEA-Ⅱ: an adaptive multifactorial evolutionary algorithmfor permutation-based discrete optimization problems[C]∥Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. NewYork: ACM, 2020:1690-1696.
[23] YANG Q, CHEN W N, GU T L, et al. An adaptive stochastic dominant learning swarm optimizer for high-dimensional optimization[ J] . IEEE Transactions on Cybernetics, 2022, 52(3) : 1960-1976.
[24] TIZHOOSH H R. Opposition-based learning: a newscheme for machine intelligence [ C]∥International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce(CIMCA-IAWTIC′06) . Piscataway: IEEE, 2005: 695-701.
[25] DAVAHLI A, SHAMSI M, ABAEI G. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoTwireless networks [ J ] . Journal of Ambient Intelligenceand Humanized Computing, 2020, 11(11) : 5581-5609.
[26] TAVALLAEE M, BAGHERI E, LU W, et al. A detailedanalysis of the KDD CUP 99 data set [ C]∥2009 IEEESymposium on Computational Intelligence for Security andDefense Applications. Piscataway: IEEE, 2009: 1-6.
[27] EWEES A A, GAHEEN M A, YASEEN Z M, et al.Grasshopper optimization algorithm with crossover operators for feature selection and solving engineering problems[ J] . IEEE Access, 2022, 10: 23304-23320.