[2] CARLSON T, TOVAR D A, ALINK A, et al. Representational dynamics of object vision: the first 1000 ms[ J] .Journal of Vision, 2013, 13(10) : 1.
[3] KANESHIRO B, PERREAU GUIMARAES M, KIM HS, et al. A representational similarity analysis of the dynamics of object processing using single-trial EEG classification[ J] . PLoS One, 2015, 10(8) : e0135697.
[4] EL-LONE R, HASSAN M, KABBARA A, et al. Visualobjects categorization using dense EEG: a preliminarystudy[C]∥2015 International Conference on Advances inBiomedical Engineering ( ICABME) . Piscataway: IEEE,2015: 115-118.
[5] PAREKH V, SUBRAMANIAN R, ROY D, et al. AnEEG-based image annotation system [ M ] ∥Communications in Computer and Information Science. Berlin:Springer, 2018: 303-313.
[6] SPAMPINATO C, PALAZZO S, KAVASIDIS I, et al.Deep learning human mind for automated visual classification[C]∥2017 IEEE Conference on Computer Vision andPattern Recognition (CVPR) . Piscataway: IEEE, 2017:4503-4511.
[7] ZHENG X, CHEN W Z, YOU Y, et al. Ensemble deeplearning for automated visual classification using EEG signals[ J] . Pattern Recognition, 2020, 102: 107147.
[8] ZHENG X, CHEN W Z. An attention-based Bi-LSTM method for visual object classification via EEG[ J]. BiomedicalSignal Processing and Control, 2021, 63: 102174.
[9] MISHRA A, RAJ N, BAJWA G. EEG-based image feature extraction for visual classification using deep learning[C] ∥2022 International Conference on Intelligent DataScience Technologies and Applications ( IDSTA) . Piscataway: IEEE, 2022: 181-188.
[10] KHALEGHI N, REZAII T Y, BEHESHTI S, et al. Developing an efficient functional connectivity-based geometric deep network for automatic EEG-based visual decoding[ J] . Biomedical Signal Processing and Control, 2023,80: 104221.
[11] SHU B, REN F J, BAO Y W. Investigating LSTM withk-max pooling for text classification[C]∥2018 11th International Conference on Intelligent Computation Technology and Automation ( ICICTA ) . Piscataway: IEEE,2018: 31-34.
[12] KIM Y. Convolutional neural networks for sentence classification[ C ] ∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP) . Stroudsburg: ACL, 2014: 1746-1751.
[13] GUO B, ZHANG C X, LIU J M, et al. Improving textclassification with weighted word embeddings via a multichannel TextCNN model [ J ] . Neurocomputing, 2019,363: 366-374.
[14] 周澳回, 翁知远, 周思源, 等. 一种基于主题过滤和语义匹配的服务发现方法[ J] . 郑州大学学报( 工学版) , 2022, 43(6) : 36-41, 56.
ZHOU A H, WENG Z Y, ZHOU S Y, et al. A servicediscovery method based on topic filtering and semanticmatching [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(6) : 36-41, 56.
[15] MONTANARO A, EBISUZAKI T, BERTAINA M.Stack-CNN algorithm: a new approach for the detection ofspace objects[ J] . Journal of Space Safety Engineering,2022, 9(1) : 72-82.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutionalnetworks for large-scale image recognition [ EB / OL ] .(2014- 09 - 04) [ 2023 - 07 - 15 ] . http:∥doi. org / 10.48550 / arXiv. 1409. 1556.
[17] BAUER E, KOHAVI R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants[ J] . Machine Learning, 1999, 36(1) : 105-139.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residuallearning for image recognition[C]∥2016 IEEE Conferenceon Computer Vision and Pattern Recognition ( CVPR).Piscataway: IEEE, 2016: 770-778.
[19] WU Z F, SHEN C H, VAN DEN HENGEL A. Wider ordeeper: revisiting the ResNet model for visual recognition[ J] . Pattern Recognition, 2019, 90: 119-133.
[20] DUBEY V K, SARKAR S, SHUKLA R, et al. Epilepticseizure stage classification from EEG signal using ResNet18 model and data augmentation [ C ] ∥2022 IEEEDelhi Section Conference ( DELCON ) . Piscataway:IEEE, 2022: 1-5.
[21] 杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40.
YANG J F, QIAO P R, LI Y M, et al. A review of machine-learning classification and algorithms[ J] . Statistics& Decision, 2019, 35(6) : 36-40.
[22] SHAH K, PATEL H, SANGHVI D, et al. A comparativeanalysis of logistic regression, random forest and KNNmodels for the text classification[ J] . Augmented HumanResearch, 2020, 5(1) : 12.
[23] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNetlarge scale visual recognition challenge[ J] . InternationalJournal of Computer Vision, 2015, 115(3) : 211-252.
[24] 郝旺身, 陈耀, 孙浩, 等. 基于全矢-CNN 的轴承故障诊断研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2020, 41(5) : 92-96.
HAO W S, CHEN Y, SUN H, et al. Bearing fault diagnosis based on full vector-CNN[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 92-96.