[1]匡一达,姚志敏,边会婷,等.灭火剂对高温混凝土抗压强度和劈拉强度的影响[J].郑州大学学报(工学版),2024,45(04):111-116.[doi:10.13705/ j.issn.1671-6833.2024.04.007]
 KUANG Yida,YAO Zhimin,BIAN Huiting,et al.Effect of Fire Extinguishing Agents on Compressive Strength and Splitting Tensile Strength of Concretes Exposed to High Temperatures[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):111-116.[doi:10.13705/ j.issn.1671-6833.2024.04.007]
点击复制

灭火剂对高温混凝土抗压强度和劈拉强度的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
111-116
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
Effect of Fire Extinguishing Agents on Compressive Strength and Splitting Tensile Strength of Concretes Exposed to High Temperatures
文章编号:
1671-6833(2024)04-0111-06
作者:
匡一达1 姚志敏2 边会婷1 赵 军1 李新喆1 张丽娟1
1.郑州大学 力学与安全工程学院,河南 郑州 450001;2.郑州科技学院 机械工程学院,河南 郑州 450064
Author(s):
KUANG Yida1 YAO Zhimin2 BIAN Huiting1 ZHAO Jun1 LI Xinzhe1 ZHANG Lijuan1
1.School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.School of Mechanical Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
关键词:
混凝土 高温 灭火剂 抗压强度 劈拉强度 龄期 烧失率
Keywords:
concrete high temperature fire extinguishing agents compressive strength splitting tensile strength curing age mass loss rate
分类号:
TU528.01
DOI:
10.13705/ j.issn.1671-6833.2024.04.007
文献标志码:
A
摘要:
为了研究不同灭火剂对高温混凝土力学性能的影响,以5 ℃/min和10 ℃/min升温速率将不同龄期的混 凝土在高温炉里进行加热,分别在200、400、600、800 ℃下维持恒温1 h,测试了不同龄期和不同加热温度下试件的 质量损失率。随后将混凝土试块放置于钢化玻璃箱体中,分别使用水、二氧化碳、哈龙1211、七氟丙烷作为灭火剂 进行冷却,冷却至室温后,测试不同灭火剂处理后混凝土试块的抗压强度和劈拉强度。结果表明:龄期对烧失率的 影响主要体现在400 ℃加热条件下,7 d和14 d养护龄期试块的烧失率大于28 d养护龄期试块的烧失率;常温下 灭火剂不影响试块的抗压强度,400 ℃和600 ℃时水、哈龙1211和七氟丙烷会使试块抗压强度降低;对于养护龄期 为7 d和14 d的试块,水冷处理在600 ℃条件下会使试块抗压强度升高,分别升高了9.14%和9.18%,龄期并不影 响哈龙1211和七氟丙烷的试验结果;加热温度为800 ℃时,试块高温后抗压强度较低,不能体现不同处理方式对 试块抗压强度的影响;400 ℃下水、哈龙1211和七氟丙烷会使混凝土劈拉强度降低;二氧化碳对高温混凝土抗压强 度和劈拉强度的影响可以忽略。
Abstract:
To study the influences of fire extinguishing agents on the mechanical performance of concretes after high temperatures, specimens of different curing ages were heated to different temperatures at 5 ℃/min and 10 ℃/min heating rates, and then they were maintained at different constant temperatures of 200 ℃, 400 ℃, 600 ℃ and 800 ℃ for one hour. The mass loss rate of specimens of different curing ages and heating temperatures were tested. Specimens were moved into a tempered glass frame. Water, Halon 1211, CO2 and HFC-227ea were used to treat these specimens. The results showed that the mass loss rates of the specimen with 7 d and 14 d curing age were sig nificantly higher than that in 28 d curing age at 400 ℃. Fire extinguishing agents did not affect the compressive strength of the specimens at room temperature. Water, Halon 1211, and HFC-227ea could reduce compressive strength of the specimens after high temperature treatment at 400 ℃ and 600 ℃. However, water cooling treatment at 600 ℃ could increase the compressive strength of the specimen with 7 d and 14 d curing age by 9.14% and 9.18%. Curing age did not affect the experimental results of Halon 1211 and HFC-227ea, and the compressive strength of the specimen was relatively low at 800 ℃, which could not reflect the influence of different treatment methods on the compressive strength. Water, Halon 1211, and HFC-227ea fire extinguishing agents could reduce the splitting tensile strength of concrete at 400 ℃. CO2 had no influence on the compressive strength and splitting tensile strength of concrete.

参考文献/References:

[1] 陈宗平, 王欢欢, 陈宇良. 高温后混凝土的力学性能 试验研究[J]. 混凝土, 2015(1): 13-17. 

CHEN Z P, WANG H H, CHEN Y L. Test study on mechanical properties of concrete after a fire high tempera ture[J]. Concrete, 2015(1): 13-17. 
[2] 花尉攀, 李凯峰, 谢晓杰. 高温后混凝土抗压强度及 细观损伤机理实验研究[J]. 消防科学与技术, 2021, 40(9): 1317-1321. 
HUA W P, LI K F, XIE X J. Experimental study on compressive strength and meso-damage of concrete under high temperature[J]. Fire Science and Technology, 2021, 40(9): 1317-1321. 
[3] 梁书锋, 方士正, 韦贵华, 等. 高温作用后硅质砂岩 力学性能试验[J]. 郑州大学学报(工学版), 2021, 42(3): 87-92. 
LIANG S F, FANG S Z, WEI G H, et al. Experiments on mechanical properties of siliceous sandstone after high temperature[J]. Journal of Zhengzhou University (Engi neering Science), 2021, 42(3): 87-92. 
[4] 徐彧, 徐志胜. 高温作用后混凝土强度试验研究[J]. 混凝土, 2000(2): 44-45, 53. 
XU Y, XU Z S. Experiment investigation of strength of concrete after high temperature[J]. Concrete, 2000(2):44-45, 53. 
[5] 贾福萍, 吕恒林, 崔艳莉, 等. 不同冷却方式对高温 后混凝土性能退化研究[J]. 中国矿业大学学报, 2009, 38(1): 25-29. 
JIA F P, LYU H L, CUI Y L, et al. Research on de graded behaviors of research into the degraded properties of concrete specimens heated to different temperatures and then subject to various cooling methods[J]. Journal of China University of Mining & Technology, 2009, 38(1): 25-29. 
[6] ARIOZ O. Effects of elevated temperatures on properties of concrete[J]. Fire Safety Journal, 2007, 42(8): 516 522. 
[7] MUBARAK Y, ALBTOOSH S, AL-HAMAMREH Z. Effects of the exposure to fire and fire extinguishing agents on the behavior of building materials[J]. International Journal of Emerging Trends in Engineering Research, 2020,8(7): 3433-3441. 
[8] 曹丽英, 张品, 张永丰, 等. 七氟丙烷灭火剂热解规 律研究[J]. 消防科学与技术, 2014, 33(12): 1426 1428, 1439. 
CAO L Y, ZHANG P, ZHANG Y F, et al. A study on the pyrolysis regularity of HFC-227ea[J]. Fire Science and Technology, 2014, 33(12): 1426-1428, 1439. 
[9] 傅学成, 陈涛, 周彪, 等. 七氟丙烷与火焰作用过程 中产生的氟化氢研究[J]. 燃烧科学与技术, 2011, 17 (4): 363-367. 
FU X C, CHEN T, ZHOU B, et al. Generation of hydro gen fluoride during fire suppression using 2-H-heptaflu oropropane[J]. Journal of Combustion Science and Tech nology, 2011, 17(4): 363-367. 
[10]国家质量监督检验检疫总局, 中国国家标准化管理委 员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中 国标准出版社, 2008. 
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Stand ardization Administration of the People′s Republic of Chi na. Common portland cement: GB 175—2007[S]. Bei jing: Standards Press of China, 2008. 
[11]国家市场监督管理总局, 国家标准化管理委员会. 建 设用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国 标准出版社, 2022. 
State Administration for Market Regulation, Standardiza tion Administration of the People′s Republic of China. Pebble and crushed stone for construction: GB/T 14685—2022 [S]. Beijing: Standards Press of China, 2022. 
[12]国家市场监督管理总局, 国家标准化管理委员会. 建设用 砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022. 
State Administration for Market Regulation, Standardiza tion Administration of the People′s Republic of China. Sand for construction: GB/T 14684—2022[S]. Beijing: Standards Press of China, 2022. 
[13]中华人民共和国住房和城乡建设部. 普通混凝土配合 比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业 出版社, 2011. 
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Specification for mix propor tion design of ordinary concrete: JGJ 55—2011[S]. Bei jing: China Architecture & Building Press, 2011. 
[14] DWAIKAT M B, KODUR V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural sys tems[J]. Fire Safety Journal, 2009, 44(3): 425-434. 
[15] YAO W J, PANG J Y, LIU Y S. Performance degradation and microscopic analysis of lightweight aggregate con crete after exposure to high temperature[J]. Materials, 2020, 13(7): 1566. 
[16]李春玲, 陈兵, 陈龙珠. 早龄期混凝土高温性能试验研 究[J]. 四川建筑科学研究, 2008, 34(4): 184-188. 
LI C L, CHEN B, CHEN L Z. Experimental study on mechanical properties of early-aged concrete after expo sure to high temperatures[J]. Sichuan Building Science, 2008, 34(4): 184-188. 
[17]杨倩. 高温后自然冷却的普通混凝土承压性能试验研 究[D]. 南宁: 广西大学, 2018. 
YANG Q. Experimental study on compressive behavior of ordinary concrete with cooling naturally after high temper ature[D]. Nanning: Guangxi University, 2018. 
[18]WANG G M, ZHANG C, ZHANG B, et al. Study on the high-temperature behavior and rehydration characteristics of hardened cement paste[J]. Fire and Materials, 2015, 39(8): 741-750. 
[19] ZHANG J R, LV T, ZHU Y, et al. Damage mechanism of engineered cementitious composites after exposed to el evated temperatures: experimental and molecular dynam ics study[J]. Cement and Concrete Composites, 2022, 129: 104507. 
[20] ZHAO Y, DING D, BI J, et al. Experimental study on mechanical properties of precast cracked concrete under different cooling methods[J]. Construction and Building Materials, 2021, 301: 124141. 
[21] KE W, WANG K, ZHOU B, et al. The cooling perform ance of halogenated alkane fire extinguishing agent and its quantitative prediction model[J]. Thermal Science and Engineering Progress, 2021, 26: 101093.

相似文献/References:

[1]孙增智,田俊壮,杨凯,等.干湿循环作用下盐分对桥墩混凝土耐久性影响实验研究[J].郑州大学学报(工学版),2016,37(05):6.[doi:10.13705/j.issn.1671-6833.2016.05.002]
 Sun Zengzhi,Tian Junzhuang,Yang Kai,et al.Effect of Salt on Concrete Durability Under Dry-wet Cycle[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):6.[doi:10.13705/j.issn.1671-6833.2016.05.002]
[2]赵娟,李倍.气候变化对中原地区桥梁碳化寿命影响研究[J].郑州大学学报(工学版),2016,37(06):68.[doi:10.13705/j.issn.1671-6833.2016.06.021]
 Zhao Juan,Li Bei.Research on Bridge Carbonation Life Influenced by Climate Change in Central Plains[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):68.[doi:10.13705/j.issn.1671-6833.2016.06.021]
[3]唐先习,尹月酉,国伟.混凝土开裂部位氯离子渗透试验研究[J].郑州大学学报(工学版),2015,36(01):66.[doi:10.3969/ j. issn.1671 -6833.2015.01.016]
 TANG Xian-xi,YIN Yue-you,GUo Wei.Experimental Study of the Chloride Ion Penetration on the Crack Parts of Concrete[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):66.[doi:10.3969/ j. issn.1671 -6833.2015.01.016]
[4]王娟,王会娟,许耀群,等.单轴荷载作用下混凝土强度代表体尺寸定量研究[J].郑州大学学报(工学版),2018,39(01):12.[doi:10.13705/j.issn.1671-6833.2018.01.002]
 Wang Juan,Wang Huijuan,Xu Yaoqun,et al.Quantitative Study on the Representative Volume Element Size of Concrete Strength under Uniaxial Loading[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):12.[doi:10.13705/j.issn.1671-6833.2018.01.002]
[5]付昌会,冯忠绪,张磊..搅拌方式对混凝土含气量及孔结构的影响[J].郑州大学学报(工学版),2011,32(02):42.[doi:10.3969/j.issn.1671-6833.2011.02.011]
[6]刘银芳,陈国荣,尤国英,等.基于microGA和有限元的混凝土坝热学参数反分析[J].郑州大学学报(工学版),2011,32(06):63.
 LIU Yin-fangCHEN Guo-rong,YOU Guo-ying,JIANG Chao.Back Analysis for Thermal Parameters of Concrete Dam with MicroGenetic Algorithm and Finite Element Method[J].Journal of Zhengzhou University (Engineering Science),2011,32(04):63.
[7]曾力,朱蕴东,赵卓..基于渗透性的混凝土力学和耐久性能指标相关性试验[J].郑州大学学报(工学版),2013,34(01):1.[doi:10.3969/j.issn.1671-6833.2013.01.001]
 ZENG Li,ZHU Yun-dong,ZHAO Zhuo.Experiment on the Correlation of Chloride Diffusion Coefficient with Mechanical andDurability Index of Concrete with Supplementary Cementitious Materials[J].Journal of Zhengzhou University (Engineering Science),2013,34(04):1.[doi:10.3969/j.issn.1671-6833.2013.01.001]
[8]杨卫忠,王云莉..一种新的混凝土二维强度准则[J].郑州大学学报(工学版),2008,29(04):120.[doi:10.3969/j.issn.1671-6833.2008.04.028]
[9]杨卫忠,樊濬..混凝土单轴受压本构模型及其应用[J].郑州大学学报(工学版),2006,27(01):1.[doi:10.3969/j.issn.1671-6833.2006.01.001]
 Yang Weizhong,Fan Huan.Concrete uniaxial compression constitutive model and its application[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):1.[doi:10.3969/j.issn.1671-6833.2006.01.001]
[10]程红强,高丹盈,张启明..老混凝土表面粗糙度的一种简单测定法[J].郑州大学学报(工学版),2006,27(01):24.[doi:10.3969/j.issn.1671-6833.2006.01.006]
 CHENG Hongqiang,GAO Danying,Zhang Qiming.A simple method for determining the surface roughness of old concrete[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):24.[doi:10.3969/j.issn.1671-6833.2006.01.006]

更新日期/Last Update: 2024-06-14