[2] FERRAG M A, MAGLARAS L, MOSCHOYIANNIS S,et al. Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study [ J] .Journal of Information Security and Applications, 2020,50(C) :102419.
[3] ZHANG X Q, YANG F, HU Y, et al. RANet: networkintrusion detection with group-gating convolutional neuralnetwork[ J] . Journal of Network and Computer Applications, 2022, 198: 103266.
[4] AL-HAWAWREH M, MOUSTAFA N, GARG S, et al.Deep learning-enabled threat intelligence scheme in theinternet of things networks [ J ] . IEEE Transactions onNetwork Science and Engineering, 2021, 8( 4) : 2968 -2981.
[5] 张安琳, 张启坤, 黄道颖, 等. 基于 CNN 与 BiGRU 融合神经网络的入侵检测模型[ J] . 郑州大学学报( 工学版) , 2022, 43(3) : 37-43.
ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intrusion detection model based on CNN and BiGRU fusedneural network [ J ] . Journal of Zhengzhou University(Engineering Science) , 2022, 43(3) : 37-43.
[6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, etal. Generative adversarial networks[EB / OL]. (2014-06-10) [2024-01-10] . http:∥arxiv. org / abs/ 1406. 2661.
[7] DIVYA S, JIANNONG C. Generative adversarial networks (GANs) : challenges, solutions, and future directions[ J] . ACM Computing Surveys, 2022,54(3) :1-42.
[8] ZHOU N R, ZHANG T F, XIE X W, et al. Hybrid quantum-classical generative adversarial networks for imagegeneration via learning discrete distribution [ J ]. SignalProcessing: Image Communication, 2023, 110: 116891.
[9] FRID-ADAR M, KLANG E, AMITAI M, et al. Synthetic data augmentation using GAN for improved liver lesionclassification[C]∥2018 IEEE 15th International Symposium on Biomedical Imaging ( ISBI 2018 ) . Piscataway:IEEE, 2018: 289-293.
[10] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-imagetranslation with conditional adversarial networks [ C ] ∥2017 IEEE Conference on Computer Vision and PatternRecognition ( CVPR) . Piscataway: IEEE, 2017: 5967 -5976.
[11] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥2017 IEEE International Conference on Computer Vision ( ICCV) . Piscataway: IEEE, 2017: 2242 -2251.
[12] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al.Unsupervised anomaly detection with generative adversarial networks to guide marker discovery [EB / OL]. ( 2017 -03-17)[2024-01-10]. http:∥arxiv. org / abs/ 1703. 05921.
[13] LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generativeadversarial networks[C]∥Artificial Neural Networks andMachine Learning-ICANN 2019. New York:ACM, 2019:703-716.
[14] DONAHUE J, KRÄHENBÜHL P, DARRELL T. Adversarial feature learning[EB / OL] . (2017-04-03) [2024-01-10] . http:∥arxiv. org / abs/ 1605. 09782.
[15] GEIGER A, LIU D Y, ALNEGHEIMISH S, et al.TadGAN: time series anomaly detection using generativeadversarial networks[ C]∥2020 IEEE International Conference on Big Data. Piscataway: IEEE, 2020: 33-43.
[16] 刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[ J] . 计算机应用,2023, 43(1) : 160-168.
LIU Y M, YANG Y J, LUO H Y, et al. Intrusion detection method for wireless sensor network based on bidirectional circulation generative adversarial network[ J] . Journal of Computer Applications, 2023, 43(1): 160-168.
[17] 胡梦娜, 何强, 贾俊铖, 等. EB-GAN: 基于 BiGAN 的网络流 量 异 常 检 测 方 法 [ J] . 计 算 机 应 用 与 软 件,2023, 40(6) : 303-309.
HU M N, HE Q, JIA J C, et al. EB-GAN: network traffic anomaly detection method based on BiGAN[ J] . Computer Applications and Software, 2023, 40 ( 6 ) : 303-309.
[18] SONG J Y, PAUL R, YUN J H, et al. CNN-based anomaly detection for packet payloads of industrial controlsystem [ J ] . International Journal of Sensor Networks,2021, 36(1) : 36-49.
[19] ANDRESINI G, APPICE A, MALERBA D. Nearestcluster-based intrusion detection through convolutionalneural networks [ J] . Knowledge-Based Systems, 2021,216: 106798.
[20] LI Z P, QIN Z, HUANG K, etal. Intrusion detection using convolutional neural networks for representationlearning[C]∥Neural Information Processing: 24th International Conference. New York:ACM, 2017: 858-866.
[21] KIM T, SUH S C, KIM H, et al. An encoding techniquefor CNN-based network anomaly detection [ C ] ∥2018IEEE International Conference on Big Data. Piscataway:IEEE, 2018: 2960-2965.
[22] VAN DER MAATEN L, HINTON G. Viualizing data using T-SNE[ J] . Journal of Machine Learning Research,2008,9(2605) : 2579-2605.
[23] PREPARATA F P, HONG S J. Convex hulls of finitets of points in two and three dimensions[ J] . Communications of the ACM, 1977, 20(2) : 87-93.
[24] VERGARA J R, ESTÉVEZ P A. A review of feature selection methods based on mutual information[ J] . NeuralComputing and Applications, 2014, 24(1) : 175-186.
[25] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover′sdistance as a metric for image retrieval[ J] . InternationalJournal of Computer Vision, 2000,40(2) :99-121.
[26] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[ C]∥Proceedings ofthe 31st International Conference on Neural InformationProcessing Systems. New York:ACM, 2017: 5769-5779.
[27] LICHMAN M. UCI machine learning repository [ EB /OL] . [ 2024 - 01 - 10 ] . https:∥www. unb. ca / cic / datasets/ nsl. html.
[28] MOUSTAFA N,SLAY J. UNSW-NB15: a comprehensivedataset for network intrusion detection systems[ C]∥ Proceedings of the 2015 Military Communicationsand Information Systems Conference. Piscataway: IEEE,2015:1-6.
[29] IMAN S, ARASH H, Ali G. Toward Generating a NewIntrusion Detection Dataset and Intrusion Traffic Characterization[EB / OL] . [2024-01-10] . https:∥specialsci.cn / detail / 4ff953c0- 6952 - 4916 - bc7d - 7c4d851f868e?resourceType = 0.
[30] ZHAI S F, CHENG Y, LU W N, et al. Deep structuredenergy based models for anomaly detection[C]∥Proceedings of the 33rd International Conference on InternationalConferenceon Machine Learning-Volume 48. New York:ACM, 2016: 1100-1109.
[31] ZENATI H, ROMAIN M, FOO C S, et al. Adversariallylearned anomaly detection[ C]∥2018 IEEE InternationalConference on Data Mining ( ICDM) . Piscataway:IEEE,2018: 727-736.