[2] ROBERT S K, COLLEEN E C. Basis and treatment ofcardiac arrhythmias[M] . Berlin:Springer,2006.
[3] MIEGHEM C, SABBE M, KNOCKAERT D. The clinicalvalue of the ECG in noncardiac conditions [ J ] . Chest,2004, 125(4) : 1561-1576.
[4] STAMKOPOULOS T, DIAMANTARAS K, MAGLAVERASN, et al. ECG analysis using nonlinear PCA neural networksfor ischemia detection [ J ]. IEEE Transactions on SignalProcessing, 1998, 46(11) : 3058-3067.
[5] 朱凌云. 移动心电监护系统 ECG 信号的智能检测与分析方法研究[D] . 重庆: 重庆大学, 2003.
ZHU L Y. The algorithms research of ECG signals intelligent detection & analysis for mobile cardiac telemonitoringsystem[D] . Chongqing: Chongqing University, 2003.
[6] PERLMAN O, KATZ A, AMIT G, et al. Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme[ J] . IEEE Journal of Biomedical and Health Informatics,2016, 20(6) : 1513-1520.
[7] 李润川, 张行进, 陈刚, 等. 基于多特征融合的心搏类型识别研究[ J] . 郑州大学学报(工学版) , 2021, 42(4) : 7-12.
LI R C, ZHANG X J, CHEN G, et al. Research onheartbeat type recognition based on multi-feature fusion[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(4) : 7-12.
[8] SCHLÄPFER J, WELLENS H J. Computer-interpreted electrocardiograms: benefits and limitations[ J] . Journal ofthe American College of Cardiology, 2017, 70 ( 9 ) :1183-1192.
[9] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, etal. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neuralnetwork[ J] . Nature Medicine, 2019, 25: 65-69.
[10] RIBEIRO A H, RIBEIRO M H, PAIXÃO G M M, et al.Automatic diagnosis of the 12-lead ECG using a deep neural network [ J ] . Nature Communications, 2020,11: 1760.
[11] 王文刀, 王润泽, 魏鑫磊, 等. 基于堆叠式双向 LSTM的心电图 自 动 识 别 算 法 [ J] . 计 算 机 科 学, 2020, 47(7) : 118-124.
WANG W D, WANG R Z, WEI X L, et al. Automaticrecognition of ECG based on stacked bidirectional LSTM[ J] . Computer Science, 2020, 47(7) : 118-124.
[12] FUKUSHIMA K. Neocognitron: a self-organizing neuralnetwork model for a mechanism of pattern recognition unaffected by shift in position [ J] . Biological Cybernetics,1980, 36(4) : 193-202.
[13] GOLLER C, KUCHLER A. Learning task-dependent distributed representations by backpropagation through structure [ C ] ∥ Proceedings of International Conference onNeural Networks. Piscataway: IEEE, 1996: 347-352.
[14] LIU F, ZHOU X S, CAO J L, et al. A LSTM and CNNbased assemble neural network framework for arrhythmiasclassification[C]∥ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 1303-1307.
[15] SHAKER A M, TANTAWI M, SHEDEED H A, et al.Generalization of convolutional neural networks for ECGclassification using generative adversarial networks [ J ] .IEEE Access, 2020, 8: 35592-35605.
[16] YAO Q H, FAN X M, CAI Y P, et al. Time-incrementalconvolutional neural network for arrhythmia detection invaried-length electrocardiogram[C]∥2018 IEEE 16th IntlConf on Dependable, Autonomic and Secure Computing,16th Intl Conf on Pervasive Intelligence and Computing,4th Intl Conf on Big Data Intelligence and Computing andCyber Science and Technology Congress. Piscataway:IEEE, 2018: 754-761.
[17] CHEN C Y, LIN Y T, LEE S J, et al. Automated ECGclassification based on 1D deep learning network [ J ] .Methods, 2022, 202: 127-135.
[18] YE X H, HUANG Y Q, LU Q. Automatic multichannelelectrocardiogram record classification using XGBoost fusion model[J]. Frontiers in Physiology,2022,13: 840011.
[19] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residualshrinkage networks for fault diagnosis[J]. IEEE Transactionson Industrial Informatics, 2020, 16(7): 4681-4690.
[20] DONOHO D L. De-noising by soft-thresholding[ J] . IEEETransactions on Information Theory, 1995, 41(3) : 613-627.
[21] The China physiological signal challenge 2018. [ EB /OL] . (2018 - 10 - 17 ) [ 2024 - 02 - 10 ] . https:∥2018.icbeb. org / Challenge. html.
[22] SIMONYAN K, ZISSERMAN A. Very deep convolutionalnetworks for large-scale image recognition [ EB / OL ] .(2014 - 09 - 04 ) [ 2024 - 02 - 10 ] . https: ∥ doi. org /10. 48550 / arXiv. 1409. 1556.
[23] HE K M, ZHANG X Y, REN S Q, et al. Deep residuallearning for image recognition [ C] ∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[24] DONG Y F, CAI W Q, QIU L S, et al. Detection of arrhythmia in 12-lead varied-length ECG using multi-branchsignal fusion network [ J ] . Physiological Measurement,2022, 43(10) : 105009.