Vol.15 No.2 Jun. 1994

惰性气氛中活性氧化铝催化 剂上羰基硫水解动力学研究* 李建伟 张永战 方文骥

(郑州工学院化工系)

摘 要:本文在85~170°C、常压及高纯氮气氛下,采用微型积分反应器研究了活性氧化 组催化剂上羰基硫水解反应本征动力学,实验数据以改进的 Marquardt 法进行搜索、选优。确定了 COS 和 H₂O 的反应级数分别为 1 和 0;并提出了符合水解反应规律的 Rideal-Eley 机理模型。

关键词: 羰基硫,动力学,水解。

中图分类号: O643

以煤、焦等为原料所制取的碳-合成原料气中,COS(羰基硫)是作为有机硫的主要形态与 H_2S 并存的 $^{(1,2)}$ 。由于 COS 化学性能比较稳定,很难以常规湿法脱除,工业上多以氢解技术将其脱除。近几年来,在氢解技术的基础上,又开发了 COS 水解技术。两者的化学反应方程式如下;

$$COS+H_2 = CO+H_2S-3.49kJ / mol$$

 $COS+H_2O = CO_2+H_2S+35.53kJ / mol$

比较氢解和水解反应,无论从反应本身还是从技术经济而言,COS 水解脱除具有更多的优越性。所以,国外学者十分热衷于 COS 水解技术的开发和研究,而我国还刚刚起步研究。不过,国内外大部分都偏重于水解催化剂的开发,对动力学的理论研究却很少,且研究温区大多集中在 200° 以上 $^{(3-6)}$,有一定的局限性。本文针对国内新开发的活性氧化铝 COS 水解催化剂的低温活性问题进行一些较为系统的研究和探索工作。

1 实验方法

1.1 实验所用的催化剂主要物性数据见表 1。

表 1 活性氧化铝催化剂的主要物性数据

外 观	主体	 品相 	粒 度 mm	破碎强度 MPa/粒	堆密度 g/ml	比表面 m²/g	孔容积 m³/g
白色小球	Al ₂ O ₃	$\gamma = Al_2O_3$	ф3~ ф5	1.02	0.65	101	0,1998

* 收稿日期: 1993-08-03

1.2 实验装置 采用微型积分反应器(ф6 不锈钢管)与气相色谱仪联用装置(流程见图 1)。 反应前、后干气中的 COS 浓度用 102G 型气相色谱仪的热导检测器检测; 色谱分析以外标法定量。反应器由 PID 温控系统自动控温, 恒温时, 床层温度波动在± 0.5℃ 以内。

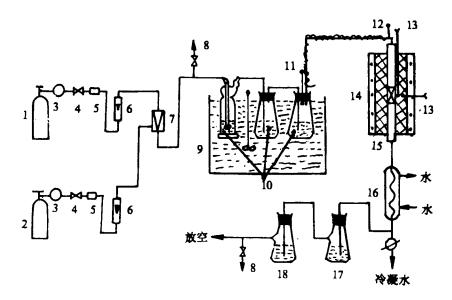
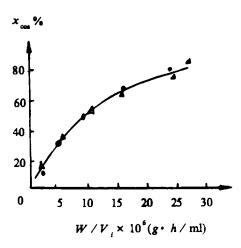



图 1 羰基硫水解动力学实验流程示意图

1-高纯 N_2 钢瓶 2-COS 钢瓶(高纯 N_2 +CO) 3-减压阀 4-稳压阀 5-稳流阀 6-转子流量计 7-喷射混合器 8-气体取样口 9-恒温水浴 10-饱和器 11-水银温度计 12-保温炉丝 13-热电偶 14-电炉 15-反应器 16-水冷却器 17-11-S 吸收瓶 18-干燥瓶

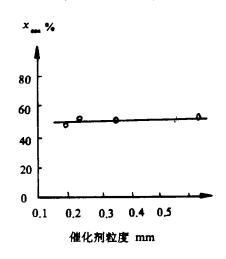


图 2 外扩散检验

 Δ 0.2002g-Catalyst 0-0.0756g-Catalyst

实验条件: COS 0.15%(干基)

m 17.621

图 3 内扩散检验

实验条件: W / Vi× 10° 10.8g · h / ml

COS 0.1397%(干基)

T 425K

m 21.624

1.3 实验条件 本文选用的实验条件为: 催化剂粒度 $0.28 \sim 0.45 \, \text{mm}$ 、空速 $18.61 \sim 18.89 \, \text{S}^{-1}$ 、 $H_2 \, \text{O} / \, \text{COSmol}$ 比 $11 \sim 51$ 、催化剂装填量为 0.0959 克。检验结果表明(见图 2、3),在此条件下可完全消除内、外扩散的影响,使反应处于动力学控制区内。

2 实验结果与讨论

2.1 参数估值结果 热力学分析表明,在 300℃以下,COS 水解反应可视为不可逆反应,选用幂函数型动力学方程:

$$r_{cos} = k_0 e^{-\frac{E}{RT}} y_{cos}^a y_{H_2O}^b \tag{1}$$

以改进的Marquardt法对表2实验数据进行最优化参数估值得到

$$r_{\text{COS}} = 2.718 \times 10^{2} e^{-\frac{21390}{RT}} y_{\text{COS}}^{0.9774} y_{\text{H,O}}^{5.33 \times 10^{-4}}$$
 (2)

考虑到参数 a 接近于 1, b 接近于 0, 故圆整参数 a=1、 b=0, 重新计算得

$$r_{\rm COS} = 1.898 \times 10^2 e^{-\frac{20810}{RT}} y_{\rm COS} \tag{3}$$

2.2 参数估值模型(3)的检验

复相关指数 $R^2 = 0.972 > 0.9$

F统计检验 $F(4,19) = 236.6 > 10F_{0.01}(4,19) = 45$

 R^2 值和 F 统计检验结果均说明估值模型 (3) 总体上是高度显著的 $^{(7)}$; 由表 2 中的 残差 ε 值可见,每个实验点上的模型计算值都能较好地吻合实测值。所以,模型 (3) 无论从总体上还是局部上都是高度显著的。

2.3 H_2O 浓度对 r_{COS} 的影响 作为对估值模型(3) 另一个侧面的检验、本文还进行了 H_2O 浓度对 r_{COS} 影响的单因素实验,实验结果见图 4。由图可见,当 H_2O 浓度 较高时(m>15),其对反应速率 (r_{COS}) 的影响很小,可忽略不计。当 H_2O 浓度比较小时(m<15),其对反应速率的影响不可忽略。这与文献 (3-6) 结果相吻合。这表明,在本文实验条件下,将 H_2O 的反应级数 b 按 0 圆速是合适的,因

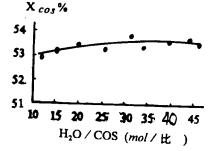


图 4 H₂O 浓度对反应速率的影响

而, 估值模型 (3) 是可信的。 实验条件: W/Vi× 10⁶ 10.66·h/ml

表 2 本片动力学实验数据与计算结果

序号	反应 温度	m	V _i	y' _{COS,i} × 10 ²	y _{COS,o} × 10 ²	y _{COS,c} × 10 ²	模型 (3) 残差 ε× 10 ²	f _y %
1	85.0	30.22	147.0	0.1413	0.1087	0.1029	-0.0058	-5.3
2	85.0	32,90	146.5	0,2293	0.1748	0.1667	-0.0081	-4.6
3	85.3	15.57	147.6	0.1796	0.1349	0.1308	-0.0041	-3.0
4 .	110.0	41.28	147.7	0.1773	0.1078	0.1102	0.0024	2.2
5	110.3	17.73	151.7	0,2433	0.1467	0.1527	0.0060	4.1
6	110.4	18.89	147.0	0.1435	0.0837	0.0887	0.0050	5.9
7	110.8	22.23	147.9	0.1357	0.0791	0.0838	0.0047	5.9
8	139.5	11.91	148.7	0,2260	0,1125	0.1103	-0.0022	-2.0
9	140.0	50.85	145.6	0.1463	0.0735	0,0699	-0,0036	-4.9
10	140.0	51,06	145.3	0.1425	0.0705	0.0681	-0.0024	-3.4
11	140.0	24.09	150.0	0.1810	0.0922	0.0884	-0.0038	-4 .1
12	155.0	15.30	150.0	0.1770	0.0816	0.0744	-0.0072	-8.8
13	155.0	34.04	148.2	0,2410	0.1088	0.1002	-0.0086	-7.9
14	155.3	30.87	148.2	0.1413	0.0661	0.0589	-0.0072	-10.9
15	155.0	29,05	148.3	0.1440	0.0655	0.0599	-0.0056	-8.5
16	166.0	28.88	150.6,	0.1470	0.0536	0.0549	0.0013	2.4
17	166.0	31,13	149.4	0.2300	0.0892	0.0853	-0.0039	-4.4
18	166,0	15.22	149,4	0.1763	0.0648	0.0654	0.0006	0.9
19	166.2	30.87	148.6	0.1413	0.0504	0.0519	0.0015	3.0
20	165.8	12.95	148.1	0.1970	0.0713	0.0726	0.0013	1.8
21	170.0	17.22	152.2	0.2383	0.0947	0.0859	-0.0088	-9.3
22	170.0	16.85	153,4	0.1498	0.0584	0.0545	-0.0039	-6.7
23	170.0	35.73	148.4	0.1955	0.0750	0.0687	-0.0063	-8.4
24	170.0	19.21	149.2	0.1392	0.0532	0.0492	-0.0040	-7.5

注: $\varepsilon = y'_{COS,c} - y'_{COS,o}$; $f_y = \varepsilon / y'_{COS,o} \times 100\%$

3 COS 水解机理模型的建立

第2期

关于 COS 水解催化剂中 Al_2O_3 的活性中心问题,Vicent Chan 和郭汉竖等人曾作过 研究; 特别是 Fiedorow R. 等的研究较多。他们认为, 只有碱性中心能起催化作用, 而酸

性中心则无催化作用,并且各组分的吸附顺序为: $H_2O \gg H_2S > COS > CO_2$, H_2O 的竞争吸附能力要比其它三组分大得多。本文实验采用高空速、高 H_2O / COS 比,且反应器人口仅含 H_2O 和 COS 两组分(其余为高纯 N_2);在反应过程中,存在 COS、 H_2O 、 H_2S 和 CO₂ 竞争吸附,相比之下, H_2O 的吸附量最大,其它组分为弱吸附或不吸附,其吸附量可略而不计。

根据上述分析和笔者对 COS 水解反应过程的热力学分析,以及 H_2O 浓度对水解速率 影响的单因素实验结果,可作如下假定:

- ①催化剂表面仅有 H_2O 吸附,其吸附常数很大,且为理想吸附。其它组分不吸附或弱吸附。
 - ②COS 水解反应因平衡常数很大,可视为不可逆反应。
 - ③气相 COS 直接与吸附态 H₂O 反应。
 - ④反应组分为理想气体, 系统为常压。

据此,可提出如下反应历程:

$$H_2O + Z = H_2O \cdot Z$$
 (4)

$$COS(g) + H_{2}O \cdot Z = H_{2}S \cdot Z + CO_{2}(g)$$
 (5)

$$H_2O + H_2S \cdot Z = H_2O \cdot Z + H_2S(g)$$
 (6)

由假定①得,式(5)为控制步骤,则

$$r_{\cos} = k_{I} P_{\cos} \theta_{H_{2}O} \tag{7}$$

根据Langmuir吸附等温式得

$$\theta_{\rm H_2O} = \frac{K_a P_{\rm H_2O}}{1 + K_a P_{\rm H_2O}} \tag{8}$$

代人(7)式得
$$r_{\cos} = \frac{K_r + K_a P_{\Pi,O} P_{\cos}}{1 + K_a P_{\Pi,O}}$$
 (9)

结合本文实验和假定 (1) 知 $K_a P_{\mu,o} \gg 1$, 故式 (9) 变为

$$r_{\cos} \approx \frac{K_{t} K_{a} P_{H_{2}O} P_{\cos}}{K_{a} P_{H_{2}O}} = k_{t} P_{\cos}$$
 (10)

在常压条件下, $P_{\cos} = y_{\cos} P_{ii} = 0.1013 y_{\cos}$, 代人(10)式得

$$r_{\cos} = 0.1013 K_{i} y_{\cos} = K_{i} y_{\cos}$$

即:

$$r_{\text{COS}} = K'_{I} y_{\text{COS}} = K_{g} e^{-\frac{E}{RT}} y_{\text{COS}}$$
 (11)

式中 $K_{r} = 0.1013K_{r}$

*Q式(11)即为由 COS 水解反应机理推出的机理模型,与估值模型(3) 相符合,说明机理假定前提是正确的,所得的机理模型反映了 COS 水解反应过程。这种机理模型即Rideal-Eley 机理模型⁽⁸⁾。

4 结论

4.1 低温(85~170℃)及常压条件下,COS 在活性 Al_2O_3 催化剂上的水解反应本征动力学可表示为:

$$r_{\rm cos} = 1.898 \times 10^2 e^{-\frac{20810}{RT}} y_{\rm cos}$$

- 4.2 在 300° C 以下,COS 水解反应可视为不可逆反应。COS 反应数为 1, H_2O 的反应级数则视其浓度而定,当浓度较低时,其反应级数不为 O(>0); 当浓度较大时 $(H_2O/COS \mod \mathbb{R})$, 其反应级数为 O(>0)
- 4.3 H₂O 在活性 Al₂O₃ 催化剂上有比 COS 更强的吸附。
- 4.4 所建立的 Rideal-Eley 机理模型能很好地符合反应体系,从而说明气相 COS 与吸附态 H_2O 之间的反应是控制步骤。

符号说明

a、b——分别为 COS 和 H₂O 的反应级数

E——活化能, J/mol

P_{cos}、P_{н,0} — 分别为 COS 和 H₂O 的分压, MPa

 K_o 、 K_i^{\prime} ——分别为前指因子和速度常数, $mol/(kg \cdot s)$

K_t——速度常数, mol/(kg·s·MPa)

m——反应器人口 H₂O / COS mol 比

R——通用气体常数, 8.314J/(mol·K)

r_{COS}——反应速度, mol/(kg·s)

fy——相对误差

T-----反应温度, k

 V_i 一气体流量,标准 ml/h

W---催化剂重量, g

 y_{\cos} 、 $y_{\rm H_2O}$ 一分别为 COS、 ${
m H_2O}$ 的瞬时 mol 分率

Z---表示催化剂活性中心

H₂O・Z、H₂S・Z——分别表示吸附态的 H₂O 和 H₂S

ε----残差

 $\theta_{\rm H,O}$ ——催化剂表面上 ${\rm H_2O}$ 的覆盖度

上角标 '---表示干基量

下角标 i——表示反应器入口

O---表示反应器出口

C——表示计算值

参考文献

- 1 方文骥等.硫化物对合成氨催化剂的毒害作用.化肥工业, 1980, [6]:30
- 2 景汝励等.T82-2-4型COS水解催化剂的耐硫抗氧性能及其侧流试验考核.化肥与催化, 1989, [1]:13
- 3 张青林等.γ-Al₂O₃催化剂上羰基硫的水解动力学.催化学报, 1988, 9[1]:14
- 4 George Z M., Kinetics of Cobalt-Molybdate-Catalyzed Reactions of SO₂ with H₂S and COSand the Hydrolysis of COS, J.Catal., 1974,32:261
- 5 Giedorow R., et al., A study of the kinetics and Mechanism of COS Hydrolysis over Alumina, J. Catal., 1984,85:339
- 6 Chan A.Y. Vicent, et al., On the Catalytic Hydrolysis of Carbonyl Sulfide over gamma——alumina, Can. Symp. Catal., 5th 1977,503—12
- 7 朱炳辰.中温度换B110,C121催化剂本征动力学的研究.化肥工业,1980,[5]:2
- 8 黄开辉等.催化原理.科学出版社,1983:235

Study of the Kinetics of COS Hysrolysis over Activated Alumina Catalyst

Li Jianwei Zhang Yongzhan Fang wenji (Zhengzhou Institute of Technology)

Abstract: The intrinsic kinetic model of hydrolysis of carbonyl sulfide over activated alumina catalyst was investigated using a miniature integral flow reactor, under atmospheric pressure and temperature range 85-170°C. Modified non—linear Marquardt method was used to get optimum values for calculations. The established kinetic model is as follows:

$$r_{\cos} = 1.898 \times 10^{2} \exp(-\frac{20810}{RT}) y_{\cos}$$

Zero-order and first-order behavior were observed for H_2O and COS, respectively. A Rideal-Eley surface reaction mechanism was put forward which seemed most compatible with the experimental data.

Keywords: kinetics, hydrolysis, carbonyl sulfide