回归分析在生产实践中的应用

陆宜清

张新育 杨松华

张建国

(郑州牧业工程高等专科学校)

(郑州工业大学数理力学系)

(开封师专,475001)

摘 要 通过对模型线性化,利用线性回归分析方法确定了母猪产仔量随季节变化的规律,这一规律 对工厂化养猪的生产安排和经营决策具有实际的应用价值。

关键词 回归分析;模型;线性化

中图分类号 0212.1

0 引言

在工厂化养猪中提高母猪的活产仔量,减少种母猪的饲养量是提高养猪经济效益的重要途径之一。因为一头母猪一年按两个妊娠期,大体需消耗600公斤饲料,以每胎平均产活仔(除死胎和木乃尹外)9.2703头算(本文试验数据),每头活仔在出生时已耗料37.36公斤(试验数据),还要加上其它费用,所以多产一头活仔就等于节约了37.36公斤饲料和相应的管理费用。这一问题中首先需要研究一个重要规律,就是母猪单窝产仔量随季节变化的规律。掌握了这一规律才能合理安排生产,提高活产仔量。本文暂不涉及其它提高产仔量的技术性问题。

1 数据收集与模型分析

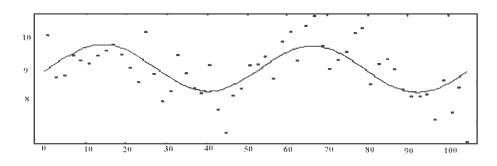


图 1 随 t 的变化可能构成的正弦曲线

下面表 1 中列出了河南省浚县农场工厂化养猪 94,95 两年双周平均单窝活产仔数量,如周数 7 对应的是 $7\sim8$ 周平均单窝活产仔量,周数 19 对应的是 $19\sim20$ 周平均单窝活产仔量。图 1 中散点是用表中的数描出的。

从图 1 中点的分布看出 t 时刻单窝产仔量 y(t)随 t 变化可能构成正弦函数,一年一个周期。因此我们可先设 $y(t)=\beta_0+\beta_1 sin(\omega_t+t_0)$,其中 $\omega=2\pi/52$. 1429=0. 1205(一年按

52.1429 周算),至于所选模型的合理性最后将给出可靠的检验。

2 模型线性化与回归分析

2.1 非线性模型 $y(t) = \beta_0 + \beta_1 sin(\omega_t + t_0)$ 的线性化 $y(t) = \beta_0 + \beta_1 sin(\omega_t + t_0) = \beta_0 + (\beta_1 cost_0) sin\omega_t + (\beta_1 sint_0) cos\omega_t$ 令 $b_0 = \beta_0$, $b_1 = \beta_1 cost_0$, $b_2 = \beta_1 sint_0$ $x_1 = sin\omega_t$, $x_2 = cos\omega_t$

表 1 某农场工厂化养猪平均单窝活产仔量

74											
t(周)	1	3	5	7	9	11	13	15	17	19	21
y(头)	10.029	9.019	9.068	9.553	9.437	9.349	9.553	9.684	9.824	9.575	9.270
	23	25	27	29	31	33	35	37	39	41	43
	8.920	10.145	9.125	8.465	8.692	9.564	9.142	8.773	8.646	9.342	8.257
	45	47	49	51	53	55	57	59	61	63	65
	7.714	8.60	8.780	9.325	9.350	9.556	9.019	9.921	10.164	9.451	10.310
	67	69	71	73	75	77	79	81	83	85	87
	10.537	9.824	9.250	9.467	9.683	10.145	10.246	8.899	9.389	9.509	9.271
	89	91	93	95	97	99	101	103	105		
	8.783	8.596	8.612	8.646	8.056	9.00	8.211	8.836	7.517		

原模型线性化为 $y = b_0 + b_1 x_1 + b_2 x_2$ 。

2.2 线性回归分析

对附表中的数据我们作了个别异常值的处理,如(45,7.714)等。然后为进一步消除随机因素的影响,突出主要规律,我们把 94,95 两年同时期的数据再作平均,共产生 26 组数据 (i,v_i) $i=1,3,5,\dots,51$. 并转化为 (v_1,v_2,v_3) $i=1,3,\dots,51$.

$$(i, y_i)$$
 $i=1, 3, 5, ..., 51$, 并转化为 (x_{i1}, x_{i2}, y_i) , $i=1, 3, ..., 51$.

对 $\begin{cases} y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + \varepsilon_i \\ \varepsilon_i iid \sim N(0, \sigma^2) \ i=1, 3, ..., 51 \end{cases}$

容许

作回归分析,计算结果如下:n=26, m=2

2.3 模型的显著性检验

$$U = b_1 L_{1y} + b_2 L_{2y} = 4.0406$$

$$Q = L_{yy} - U = 6.2778$$

$$F = \frac{U/m}{Q/(n-m-1)} = \frac{U/2}{Q/23} = 7.4014$$

$$F_{0.01}(m, n-m-1) = F_{0.01}(2,23) < 5.84$$

$$\therefore F > F_{0.01}(2,23)$$

故模型在 α=0.01 水平下显著。

2.4 b_1 , b_2 的显著性检验

经计算 C_{11} =0.0158, C_{22} =0.0159, S_e =4.4122, δ_1 =0.5379, δ_2 =-0.1441。

 $(C) = \frac{5^{2} \cdot (n - m - 1)}{(SeC_{11})} = 95.4594,$ $(C) = \frac{5^{2} \cdot (n - m - 1)}{(SeC_{11})} = \frac{95.4594}{(SeC_{11})} = \frac{95.4594}{(SeC_{11})} = \frac{1}{100} = \frac$

$$F_2 = b_1^2 (n - m - 1) / (SeC_{22}) = 6.7992,$$

查表 $F_{0.05}(1, n - m - 1) = F_{0.05}(1, 23) = 4.28$
故 $F_1 > 4.28, F_2 > 4.28$
即 b_1, b_2 以 $\alpha = 0.05$ 水平下显著。

3 最终的模型

我们把线性模型再化为原模型的形式。 $y(t) = 9.2703 + 0.5379 x_1 - 0.1441 x_2$ = 9.2703 + 0.5379 sinωt - 0.1441 cosωt= 9.2703 + 0.5569 sin(0.1205 t - 0.1446)= 9.2703 + 0.5569 sin[0.1205 (t - 1.2)]y(t) = 9.2703 + 0.5569 sin[0.1205 (t - 1.2)]

4 简单应用

上述模型所揭示的规律在实际管理中具有重要意义。首先我们可以知道一年中的第 14~15 周母猪活产仔量最高,平均每窝 9.8272 头。40~41 周母猪活产仔量最低,平均每窝 8.7134 头,相差 1.1138 头。一年中 1.2~27.2 周内产仔是一般在 9.2703 头以上,其它时间一般在 9.2703 头以下。这些结果很容易在生产安排上得到应用,从而产生更高的经济效益。至于其它方面的应用我们将另文介绍。

参考文献

- 1 赵香学等. 种猪饲养管理技术: 黑龙江人民出版社
- 2 江炳麟.现代管理中的数理统计方法:人民邮电出版社

The Application of Regression Analysis to Production Practice

Lu Yiqing

 $(Zhenzhou\ College\ of\ A\ nimal\ Husbandry)$

Zhang Xinyu Yang Songhua Zhang Jianguo (Zhenzhou College of Animal Husbandry) (Kaifeng Teachers' College)

Abstract Based on linearization of established model and linear regression analysis, this paper persents a law describing pig production with variation of seasons. This law has practical value to production assignment and decision-making for industrialization of pig-feeding.

Keywords Linear regression analysis; model; linearization; test of significance