文章编号:1007-6492(1999)03-0047-03

有后效激励阶跃数据序列的灰色系统建模方法

王志修1,李峰2,张延欣3

(1.郑州工业大学土木建筑工程学院,河南 郑州 450002; 2.中国通讯建设第四工程局,河南 郑州 450052; 3.河南省南召县城镇建设规划局,河南 南召 474650)

摘 要:为使有后效激励阶跃数据序列的建模工作更为有效简洁,基于一般的 GM(1,1)模型建模方法,采用递推方法,确定有后效激励阶跃数据序列阶跃点及其以后点的阶跃值,建立了有后效激励阶跃数据序列的灰色系统预测 IGM(1,1)模型,运用该模型及有关方法,通过实例预测结果,进行了对比验证.经验证,该方法的拟合精度较高,且参数估计简单,方便实用,可替代上述文献中的有后效激励阶跃数据序列的建模方法.最后应用该方法,建立了全国城市住宅市场需求模型,并对该市场进行了预测分析.

关键词: GM(1.1)模型; 后效激励; IGM(1.1)模型; 灰色系统; 阶跃

中图分类号: 0 159; TU 12 文献标识码: A

0 引言

由于某些因素(如政策)的变化对系统产生激 励,而使社会经济系统产生突变,在统计数据上往 往表现为阶跃,称此类数据为有后效激励的数据 序列,在对社会经济系统进行分析预测时,利用阶 跃数据序列直接建立一般的 GM(1,1)模型[1,2], 其预测精度不能令人满意, 文献[3]通过引入跃 阶函数,给出了一种带有阶跃函数的灰色系统建 模方法;文献[4]给出了有阶跃函数的 GM(1,1)模 型参数估计的新方法,但是,文献[3,4]提出的建 模与参数估计方法比较复杂. 本文基于一般的 GM(1,1)模型的建模方法,采用递推方法,建立了 有后 效 激 励 阶 跃 数 据 序 列 的 灰 色 系 统 预 测 IGM(1,1)模型,与文献[3,4]建模方法相比,拟合 精度更高. 本文中参数估计方法仍沿用一般 GM(1,1)建模的参数估计方法,最后把改进的方 法应用于全国住宅需求量预测,

1 有后效性激励阶跃数据序列数学模型

1.1 GM(1,1)数学模型的建立

给定数据序列 $X^{(0)} = (x_{(1)}^{(0)}, x_{(2)}^{(0)}, \cdots, x_{(n)}^{(0)})$,作 一阶累加生成序列 $(1-AGO), x_{(k)}^{(1)} = \sum_{m=1}^{k} x_{(m)}^{(0)}$ 得出 $X^{(1)} = (x_{(1)}^{(1)}, x_{(2)}^{(1)}, \cdots, x_{(n)}^{(1)})$ 一阶灰色模型、用 $X^{(1)}$ 建立微分方程

$$\frac{\mathrm{d}x^{(1)}}{\mathrm{d}t} - ax^{(1)} = u , \qquad (1)$$

求解式(1),将其写为离散时间响应式

$$\hat{x}_{(k+1)}^{(1)} = (x_{(1)}^{(0)} - \frac{u}{a})e^{-ak} + \frac{u}{a},$$

其中,参数列 $\hat{a} = [a, u]^T$ 用最小二乘法解得 $\hat{a} = [a, u]^T = (B^T B)^{-1} B Y_N;$

$$B = \begin{bmatrix} a^{1}B^{1-1}BY_{N}; \\ -\frac{1}{2}(x_{(1)}^{(1)} + x_{(2)}^{(1)}) & 1 \\ -\frac{1}{2}(x_{(2)}^{(1)} + x_{(3)}^{(1)}) & 1 \\ \vdots & \vdots \\ -\frac{1}{2}(x_{(n-1)}^{(1)} + x_{(n)}^{(1)}) & 1 \end{bmatrix};$$

$$Y_{N} = \begin{bmatrix} x_{(2)}^{(0)}, x_{(3)}^{(1)}, \dots, x_{(n)}^{(0)} \end{bmatrix},$$

预测数据还原得

$$\hat{x}_{(k+1)}^{(0)} = x_{(k+1)}^{(1)} - x_{(k)}^{(1)} = (1 - e^{a})(x_{(1)}^{(0)} - \frac{u}{a})e^{-ak}.$$
 (2)

1.2 IGM(1,1)数学模型

当数据序列出现后效激励时,数据序列在激励点出现阶跃,此时直接用1.1中所述的GM(1,1)建模方法进行建模预测,预测结果误差

收稿日期:1999~04-04;修订日期:1999-05-12

基金项目: 国家自然科学基金资助项目(79270076)

作者简介:王志修(1950-),男,河南省洛阳市人,郑州工业大学工程师,主要从事房地产经济与土地管理方面的研究。

很大. 因此, 对于有后效激励数据序列, 本文提出以下建模方法, 该模型简记为 IGM(1,1)模型.

给定原始数据序列 $X'^{(0)} = (x'^{(0)}_{(1)}, x'^{(0)}_{(2)}, \cdots, x'^{(0)}_{(n)})$,若在 i 点有后效激励,则用前(i-1)个数据建立 GM(1,1)模型,用于求取预测值 $\hat{x}^{(0)}_{(1)}$,定义 δ_i 为有后效激励阶跃数据序列的激励值,其中,

$$\delta_i = x'_{(i)}^{(0)} - \hat{x}_{(i)}^{(0)}$$

当 j=i, i+1, \cdots , i+n 时, 令 $x_{(j)}^{(0)}=x_{(j)}^{\prime(0)}-\delta_i$; 当 $j=1,2,\cdots,i-1$ 时, 令 $x_{(2)}^{(0)}=x_{(j)}^{\prime(0)}$, 从而得到调整后的 $X^{(0)}=(x_{(1)}^{(0)},x_{(2)}^{(0)},\cdots,x_{(n)}^{(0)})$, 用 $X^{(0)}$ 建立 GM(1,1)模型,如 1.1 节所述. 由式 (2) $\hat{x}_{(k+1)}^{(0)}=(1-e^a)(x_{(1)}^{(0)}-\frac{u}{a})e^{-ak}$, 这里考虑在 i 点出现激励值 δ_i ,则有后效激励阶跃数据序列的 IGM(1,1)数学模型为

$$\hat{x}'_{(k+1)}^{(0)} = (1 - e^a)(x_{(1)}^{(0)} - \frac{u}{a})e^{-ak}$$

$$(k = 1, 2, \dots, i - 1); \tag{3}$$

$$\hat{x}'_{(k+1)}^{(0)} = (1 - e^{a})(x_{(1)}^{(0)} - \frac{u}{\dot{q}})e^{-ak} + \delta_{i}$$

$$(k = i, i + 1, \dots, n). \tag{4}$$

2 对比分析

本文以文献[3,4]所列的数据为例,把提出的 建模方法的预测结果与文献[4]预测结果进行比 较,见表 1.

利用表 1 数据建立的 IGM(1,1)模型为

$$\hat{x}'_{(k+1)}^{(0)} = \begin{cases} 68.6109 \mathrm{e}^{0.04435k} (k = 0, 1, 2, \dots, 5) \\ 68.6109 \mathrm{e}^{0.04435k} + 70.19 (k = 6, \dots) \end{cases},$$

式中,在 k = 6 点出现的激励值为 $\delta_6 = 70.19$ 万元. 该模型求出的预测结果与文献[3,4]的预测结果如表 2 所示.

经计算,一般 GM(1,1)模型的相对误差为10.86%,文献[3,4]的相对误差分别为6.50%和6.18%,本文模型的平均相对误差为5.26%,精度高于前两种模型.

表 1 某地区小型农机 1973~1982 年销售额

万元

年度	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
销售额	79.2	70.3	81.6	83.5	75.3	84.8	156.2	154.4	174, 35	176, 32
	-		表	2 销售额	预测结果对	 付比分析表				万元
———— 年度	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
原始数据	79.2	70.3	81.6	83.5	75.3	84.8	156.2	154.4	174.35	176.32
本文	68.61	71.69	74.94	78.34	81.90	85.61	159.68	163,74	167.98	172.42
文献[3]	71.96	74.77	77.68	80.77	83.85	87.11	165.32	168.55	172.51	176.32
文献[4]	79.2	65.57	71.53	79.04	85.14	92.89	155.65	164.87	174.94	185.90

3 实证分析

我国 1986 ~ 1996 年全国住宅销售量见表 3. 由表 3 数据可以看出,销售量在 $i \approx 7,8,10$ 这 3点出现 3次阶跃,利用销售量前 6 个数据建立一般的 GM(1,1)模型为

$$\hat{x}_{(k+1)}^{(10)} = (1 - e^{-0.0290}) \left(1834.95 - \frac{2308.15}{-0.0290}\right) e^{0.0290k}$$
$$= 2327.5 e^{0.0290k},$$

其平均相对误差 $\Delta = 0.02$,精度为二级,满足要

求. 利用上述模型, 当 i = 7.8, 10 时, 可求得 $\hat{x}'_{(2)}^{(0)} = 2769.87$; $\hat{x}'_{(8)}^{(0)} = 2851.39$;

 $\hat{x}'_{(10)}^{(0)} = 3021.68$.

则该数据序列在 3 个阶跃点 i = 7, 8, 10 的 3 个激励值分别为

 $\delta_7 = 3818.21 - 2769.87 = 1042.34$;

 $\delta_8 = 6035.19 - 2851.39 = 3183.80$;

 $\delta_{10} = 6787.03 - 3021.68 = 3765.35$.

从而得到调整后的 $X^{(0)}$ 值,见表 4.

表 3 1986~1996 年全国住宅销售量[5]

万 m²

for the	4006	4005	4000	4000		4004	4000	1000	1001	1005	1004
年度	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
销售量	1834.95	2376.72	2549.12	2491.38	2544.61	2745.17	3818.21	035.19	6118.03	6787.03	6898.46
			表 4	1986 ~ 19	96 年全国	住宅销售	养量的调 整	值			万 m²
年度	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
销售量	1834.95	2376.72	2549. 12	2491.38	2544.61	2745.17	2769.87	2851.39	2934, 23	3021.68	6898.46

说明:1996年数据未加调整,该数据用作验证模型.

用表 4 前 10 个数据建立的模型 GM(1,1)为 $\hat{x}_{(k+1)}^{(0)} = (1 - e^{-0.0290})(1834.95 - \frac{2308.38}{-0.0290}e^{0.0290k})$ $= 2327.39e^{0.0290k}$

则原始数据序列预测 IGM(1,1)模型为 $\hat{x}'_{(2,1)}^{(0)} = 2327.39e^{0.0290k}$ (k = 1,2,3,4,5);

 $\hat{x}'_{(k+1)}^{(0)} = 2327.39e^{0.0290k} + 1042.34 \quad (k = 6);$

 $\hat{x}'_{(k+1)}^{(0)} = 2327.39e^{0.0290k} + 3183.80 \quad (k = 7,8,9)$;

 $\hat{x}'_{(k+1)}^{(0)} = 2327.39e^{0.0290k} + 3765.35 \quad (k = 10, \cdots).$ 模型 $\Delta = 1\%$,精度为一级,满足要求.

预测 1996 年我国住宅销售量 $\hat{x}'_{(11)}^{(0)}$ = 6875. 19, 与 1996 年的原始值 $x_{(11)}^{(0)}$ 相比, Δ = 0.3%, 远小于一级精度 1%的规定.

4 结束语

对于具有后效激励的数据序列,直接建立

CM(1,1)模型,预测精度不能令人满意,必须对原始数据序列进行处理.本文提出的建模方法,经验证,精度高于文献[3,4]中的预测方法,而且更简便、实用;IGM(1,1)预测建立在对历史数据的统计分析基础上,历史数据越大,精度越高.

参考文献:

- [1] 邓聚龙.灰色系统·社会经济[M].北京;国防工业出版社,1984.23-25.
- [2] 申金山,王志修,毕苏萍,等.房地产投资方案优选的 多目标灰色局势决策[J],郑州工业大学学报,1998, 19(3):68-71.
- [3] 吕振辽, 樊治平. 具有跃阶趋势的灰色系统建模方法[J]. 系统工程, 1990, 8(5):55-58.
- [4] 唐五湘. 带有跃阶函数 GM(1,1) 模型参数估计的新方法[J]. 系统工程,1996,14(1):65-68.
- [5] 国家统计局,中国统计年鉴[M],北京:中国统计出版社,1997,198-200.

Model Establishment of Grey System with After - effect Incentive Data Step Series

WANG Zhi - xiu¹, LI Feng², ZHANG Yan - xin³

(1. College of Civil & Building Engineering, Zhengzhou University of Technology, Zhengzhou 450002, China; 2. The Forthy Bureau of Communication Construction Engineering of China, Zhengzhou 450052, China; 3. The Urban Construction Bureau of Nanzhao County, Henan 474650, China)

Abstract: This paper brings out the model establishment method of the Grey System model which has after – effect incentive data series. We have verified the data of demand and marketing of China during 1986 ~ 1996 with IGM(1.1) method and compared it with forecasting methods from references[3,4]. By verifications, the forecasting method is extremely reliable, convenient and practical.

Key words; GM(1,1)model; after - effect incentivement; IGM(1,1)model; Grey system; step