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Fig.1 The structure of heat exchanger with longitudinal flow of shellside
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Fig.2 Four-tube model
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Fig.3 Velocity contours of 1-1 section
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Fig.4 Temperature contours of 1-1 section
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Fig.5 Temperature contours of outlet in geometry period region
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Abstract Applied by distribution resistance and volume porous for calculation of fluid flow and heat transfer of the
shell-and-tube heat exchanger based on the floating characteristic and the structural characteristic of heat exchanger
with longitudinal flow of shellside HELFS  this paper discusses simplification method problem for numerical simula-
tion of large HELFS and pus forward the geometry prototype period region model and four tube model calculation
method  to solve simulation problem of large HELFS. Further by using those simplification method and FLUENT pro-
gram discussed the influence of various structure parameters on the behavior of heat transfer and fluid flow in
HELFS the characteristics of fluid flow and heat transfer the distribution of fluid flow fields and temperature fields
and the details information of fluid flow and heat transfer in HELFS are obtained. All of them provide the required in-
formation for knowing condition of fluid flow and heat transfer and the foundation to improve design of HELFS.

Key words heat exchanger with longitudinal flow of shellside geometry prototype period region model four-tube

model CFD
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Measurement of the Infinite Dilution Activity Coefficient for
Some Quinolone Compounds in Water

REN Bao —zeng LI Wei —ran LI Chen LUO Ting - liang WANG Fu - an

College of Chemical Engineering Zhengzhou University Zhengzhou 450002 China

Abstract (Quinolone compounds are rapidly developed and widely applied which are high active widely antibacterial
and low poisonous. Based on the solid — liquid phase equilibrium theory of chemical engineering thermodynamics and
combined with the characteristics of reversed-phase liquid chromatography an infinite dilution activity coefficient
model directly measured by the liquid chromatography is established. The infinite dilution activity coefficient has not
been reported yet. Based on the infinite dilution activity coefficient model in this paper the infinite dilution activity
coefficient of some quinolone compounds such as OFLX and others at different temperatures are measured by liquid
chromatography with ion suppression. These results for quinolone compounds not only offer some key basic data for the
environmental behavior assessment of quinolone compounds but also play an important role in the exploration of the
biological activity mechanism the prediction of the pharmacology for this type of medicine.

Key words infinite dilution activity coefficient quinolone water liquid chromatography



