[1]冯冬青,张希平..基于神经网络的自学习模糊控制[J].郑州大学学报(工学版),2003,24(04):6-10.[doi:10.3969/j.issn.1671-6833.2003.04.002]
 Feng Dongqing,Zhang Xiping.Self-learning fuzzy control based on neural network[J].Journal of Zhengzhou University (Engineering Science),2003,24(04):6-10.[doi:10.3969/j.issn.1671-6833.2003.04.002]
点击复制

基于神经网络的自学习模糊控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
24
期数:
2003年04期
页码:
6-10
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Self-learning fuzzy control based on neural network
作者:
冯冬青张希平.
郑州大学电气工程学院,河南,郑州,450002, 郑州大学电气工程学院,河南,郑州,450002
Author(s):
Feng Dongqing; Zhang Xiping
关键词:
模糊控制 神经网络 自学习 仿真
Keywords:
DOI:
10.3969/j.issn.1671-6833.2003.04.002
文献标志码:
A
摘要:
将神经网络与模糊控制相结合,提出了一种基于神经网络实现自学习模糊控制的方法,并给出了神经网络训练、控制器离线自学习、控制器在线自学习的相应算法.利用该方法,可以实现控制器的离线自学习和在线自学习,从而在控制对象发生变化时,通过控制器自学习改善系统的控制性能.仿真结果表明了该方法的有效性.
Abstract:
Combining neural network and fuzzy control, a method for realizing self-learning fuzzy control based on neural network is proposed, and corresponding algorithms for neural network training, controller offline self-learning, and controller online self-learning are given. Using this method, the offline self-learning and online self-learning of the controller can be realized, so as to improve the control performance of the system through the controller self-learning when the control object changes. The simulation results show the effectiveness of the proposed method.

相似文献/References:

[1]赵伟王宁宁段燕燕.载重汽车曲线行驶只能循迹控制仿真研究[J].郑州大学学报(工学版),2015,36(02):10.[doi:10.3969/j.issn.1671 -6833.2015.02.003]
 ZHAO Wei,WANG Ning-ning,DUAN Yan-yan,et al.The Simulation Study of the Truck Curve Traveling Intelligent Traction Control[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):10.[doi:10.3969/j.issn.1671 -6833.2015.02.003]
[2]曹艳玲梁法明刘孟楠.基于模糊决策的大型客车电动助力转向系统研究[J].郑州大学学报(工学版),2015,36(03):64.[doi:10.3969/j.issn.1671 -6833.2015.03.014]
 CAO Yan-ling,LIANG Fa-ming,LIU Meng-nan,et al.Research of Large Bus Electric Power Steering System Based on Fuzzy Control[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):64.[doi:10.3969/j.issn.1671 -6833.2015.03.014]
[3]琚新刚,郭海鸥,郭敏..基于径向基神经网络的乙醇气体检测仪仿真分析[J].郑州大学学报(工学版),2010,31(03):61.[doi:10.3969/j.issn.1671-6833.2010.03.016]
 Ju Xingang,Guo Haiou,Guo Min.Simulation analysis of ethanol gas detector based on radial basis neural network[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):61.[doi:10.3969/j.issn.1671-6833.2010.03.016]
[4]曾庆山,全书鹏,靳志强..融合BP神经网络与ARIMA的短时交通流预测[J].郑州大学学报(工学版),2011,32(04):60.[doi:10.3969/j.issn.1671-6833.2011.04.015]
[5]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[6]高攀科,谢永利..隧道软弱围岩的改进BP神经网络位移反分析[J].郑州大学学报(工学版),2013,34(01):23.[doi:10.3969/j.issn.1671-6833.2013.01.006]
 GA0 Pan-ke,XIE Yong-li.Displacement Back Analysis of Tunnels in Soft and Weak RocksBased on Improved BP Neural Network Method[J].Journal of Zhengzhou University (Engineering Science),2013,34(04):23.[doi:10.3969/j.issn.1671-6833.2013.01.006]
[7]赵国生,董艳艳..变电站电压无功模糊控制器的设计[J].郑州大学学报(工学版),2013,34(04):55.[doi:10.3969/j.issn.1671-6833.2013.04.013]
 ZHAO Guo-sheng,DONG Yan-yan.Substation Voltage and Reactive Power Fuzzy Controller Design[J].Journal of Zhengzhou University (Engineering Science),2013,34(04):55.[doi:10.3969/j.issn.1671-6833.2013.04.013]
[8]孙芳锦,张大明,殷志祥..基于图像识别和神经网络的大跨度结构风荷载模拟[J].郑州大学学报(工学版),2008,29(04):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
 SUN Fangjin,ZHANG Daming,Yin Zhixiang.Wind load simulation of large-span structure based on image recognition and neural network[J].Journal of Zhengzhou University (Engineering Science),2008,29(04):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
[9]王明东,苏文霞..并联型模糊PID复合控制器的Simulink建模与仿真[J].郑州大学学报(工学版),2006,27(01):79.[doi:10.3969/j.issn.1671-6833.2006.01.019]
 WANG Mingdong,Su Wenxia.Simulink modeling and simulation of parallel fuzzy PID composite controller[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):79.[doi:10.3969/j.issn.1671-6833.2006.01.019]
[10]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]

更新日期/Last Update: 1900-01-01