[1]严晶晶,阎新芳,冯岩.WSN中基于梯度和粒子群优化算法的分级簇算法[J].郑州大学学报(工学版),2016,37(02):33-36.[doi:10.3969/j.issn.1671-6833.201505017]
 Yan Xinfang,Yan Jingjing,Feng Yan.Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN[J].Journal of Zhengzhou University (Engineering Science),2016,37(02):33-36.[doi:10.3969/j.issn.1671-6833.201505017]
点击复制

WSN中基于梯度和粒子群优化算法的分级簇算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
37
期数:
2016年02期
页码:
33-36
栏目:
出版日期:
2016-04-18

文章信息/Info

Title:
Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN
作者:
严晶晶阎新芳冯岩
郑州大学信息工程学院,河南郑州,450001
Author(s):
Yan Xinfang; Yan Jingjing; Feng Yan
School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001
关键词:
无线传感器网络梯度粒子群算法GPHCA双簇头
Keywords:
wireless sensor networks gradient particle swarm optimization GPHCA double cluster heads
DOI:
10.3969/j.issn.1671-6833.201505017
文献标志码:
A
摘要:
为均衡网络中节点的能量消耗,提出一种分级簇算法——GPHCA.该算法采用双簇头模式,利用粒子群优化算法搜寻能量大且到簇成员平均距离小的两个节点作为主簇头和副簇头,将簇头负担均衡到了两个节点上;在网关的选择上,同时考虑能量和转发路径的总距离,使最终选择的网关在能量和时延上得到均衡.仿真结果表明,GPHCA算法能有效延长网络的生命周期.
Abstract:
In order to balance the energy consumption of nodes in the network, a hierarchical clustering algorithm—GPHCA is proposed. This algorithm adopts the dual cluster head mode, and uses the particle swarm optimization algorithm to search for two nodes with large energy and small average distance to cluster members as the main cluster head. and the sub-cluster head to balance the burden of the cluster head on the two nodes; in the selection of the gateway, the energy and the total distance of the forwarding path are considered at the same time, so that the final selected gateway can be balanced in terms of energy and delay. The simulation results show that, The GPHCA algorithm can effectively prolong the life cycle of the network.

相似文献/References:

[1]阎新芳王晓晓冯岩.基于Q学习的无线传感网分簇拓扑控制算法[J].郑州大学学报(工学版),2015,36(02):85.[doi:10.3969/ j. issn.1671-6833.2015.02.019]
 YAN Xin-fang,WANG Xiao-xiao,FENG Yan,et al.A Clustering Topology Algorithm Based on Q-learning in WSN[J].Journal of Zhengzhou University (Engineering Science),2015,36(02):85.[doi:10.3969/ j. issn.1671-6833.2015.02.019]
[2]冯冬青邢凯丽.基于能量平衡的无线传感网络分布式成簇机制[J].郑州大学学报(工学版),2015,36(03):6.[doi:10.3969/ j. issn.1671 -6833.2015.03.002]
 FENG Dong-qing,XING Kai-li.A Distributed Clustering Mechanism Based on Energy Balancein Wireless Sensor Networks[J].Journal of Zhengzhou University (Engineering Science),2015,36(02):6.[doi:10.3969/ j. issn.1671 -6833.2015.03.002]
[3]滕志军,郭力文,吕金玲,等.基于时序信息分析的WSN贝叶斯信誉评价模型[J].郑州大学学报(工学版),2019,40(01):38.[doi:10.13705/j.issn.1671-6833.2019.01.007]
 Teng Zhijun,Guo Liwen,Lu Jinling,et al.WSN Bayes Reputation Evaluation Model Based on Time Series Information Analysis[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):38.[doi:10.13705/j.issn.1671-6833.2019.01.007]
[4]申金媛,赵旭东,刘润杰,等.一种无线传感器网络分层拓扑推断算法[J].郑州大学学报(工学版),2011,32(03):111.[doi:10.3969/j.issn.1671-6833.2011.03.027]
[5]凡高娟,侯彦娥,王汝传..基于RSSI参数纠正的无线传感器网络应急救灾系统[J].郑州大学学报(工学版),2012,33(04):94.[doi:10.3969/j.issn.1671-6833.2012.04.022]
 FAN Gaojuan,HOU Yane,WANG Ruchuan.RSSI based Parameters Correction Emergency Disaster Response Systemof Wireless Sensor Networks[J].Journal of Zhengzhou University (Engineering Science),2012,33(02):94.[doi:10.3969/j.issn.1671-6833.2012.04.022]

更新日期/Last Update: