[1]滕志军,郭力文,吕金玲,等.基于时序信息分析的WSN贝叶斯信誉评价模型[J].郑州大学学报(工学版),2019,40(01):38-43.[doi:10.13705/j.issn.1671-6833.2019.01.007]
 Teng Zhijun,Guo Liwen,Lu Jinling,et al.WSN Bayes Reputation Evaluation Model Based on Time Series Information Analysis[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):38-43.[doi:10.13705/j.issn.1671-6833.2019.01.007]
点击复制

基于时序信息分析的WSN贝叶斯信誉评价模型(/HTML)
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年01期
页码:
38-43
栏目:
出版日期:
2019-01-10

文章信息/Info

Title:
WSN Bayes Reputation Evaluation Model Based on Time Series Information Analysis
作者:
滕志军郭力文吕金玲侯颜权
1. 东北电力大学信息工程学院;2. 国网七台河供电公司
Author(s):
Teng Zhijun 1Guo Liwen 1Lu Jinling 1Hou Yanquan 2
1. School of Information Engineering, Northeast Electric Power University ;2. State Grid Qitaihe Power Supply Company
关键词:
无线传感器网络时间序列贝叶斯理论信誉评价信道
Keywords:
wireless sensor networksequentiallyBayesian theoryreputation evaluationchannel
DOI:
10.13705/j.issn.1671-6833.2019.01.007
文献标志码:
A
摘要:
为了有效降低信道占用对节点信誉评价的影响,提高信誉模型的准确性,针对数据中断攻击和选择性转发攻击,结合信道状态对网络的影响,引入节点行为时间序列和信道状态时间序列,提出了基于时序信息分析的TS-BRS信誉模型、采用时序分析法,对两条时间序列匹配分析,降低信道冲突对信誉评价模型的干扰,提高模型识别的准确性;并在信誉值更新中引入适应性维护函数μ,加重现阶段节点行为对信誉值的影响,提高评价模型适应性。仿真实验表明新的信誉评价模型能有效提升模型的检测率和检测速度。引入维护函数,网络中被捕获的恶意节点可以更快收敛。
Abstract:
In order to effectively reduce the influence of channel occupancy on the reputation evaluation of nodes,and to improve the accuracy of the reputation model,to track the data interrupt attacks and selective forwarding attacks,  a TS-BRS reputation model was presented based on time series information analysis to evaluate the behavior of nodes. Considering the influence of channel state on network node behavior time series and channel state time series.And ithe adaptive maintenance function μ was also introduced to update reputation value, add the influence of node behavior on reputation value in reappearing stage, and improve the adaptability of evaluation model. The simulation results showed that the new reputation evaluation model could effectively improve the detection rate and detection speed for malicious nodes.The reputation value of a mailcious node could converge more quickly. 

相似文献/References:

[1]阎新芳王晓晓冯岩.基于Q学习的无线传感网分簇拓扑控制算法[J].郑州大学学报(工学版),2015,36(02):85.[doi:10.3969/ j. issn.1671-6833.2015.02.019]
 YAN Xin-fang,WANG Xiao-xiao,FENG Yan,et al.A Clustering Topology Algorithm Based on Q-learning in WSN[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):85.[doi:10.3969/ j. issn.1671-6833.2015.02.019]
[2]冯冬青邢凯丽.基于能量平衡的无线传感网络分布式成簇机制[J].郑州大学学报(工学版),2015,36(03):6.[doi:10.3969/ j. issn.1671 -6833.2015.03.002]
 FENG Dong-qing,XING Kai-li.A Distributed Clustering Mechanism Based on Energy Balancein Wireless Sensor Networks[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.03.002]
[3]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[4]严晶晶,阎新芳,冯岩.WSN中基于梯度和粒子群优化算法的分级簇算法[J].郑州大学学报(工学版),2016,37(02):33.[doi:10.3969/j.issn.1671-6833.201505017]
 Yan Xinfang,Yan Jingjing,Feng Yan.Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN[J].Journal of Zhengzhou University (Engineering Science),2016,37(01):33.[doi:10.3969/j.issn.1671-6833.201505017]
[5]李凌均,陈超,韩捷,等.全矢支持向量回归频谱预测方法[J].郑州大学学报(工学版),2016,37(03):78.[doi:10.13705/ j.issn.1671 -6833.2016.03.018]
 LI Lingjun,CHEN Chao,HAN Jie,et al.The Prediction Method of Frequency Spectrum Based on Full Vector Support Vector Regression[J].Journal of Zhengzhou University (Engineering Science),2016,37(01):78.[doi:10.13705/ j.issn.1671 -6833.2016.03.018]
[6]贾茹宾,高金峰.基于ARIMA模型的变压器油中溶解气体含量时间序列预测方法[J].郑州大学学报(工学版),2020,41(02):67.[doi:10.13705/j.issn.1671-6833.2020.03.010]
 Jia Rubin,Gao Jinfeng.Time Series Prediction Method of Dissolved Gas Content in Transformer Oilased on ARIMA Model[J].Journal of Zhengzhou University (Engineering Science),2020,41(01):67.[doi:10.13705/j.issn.1671-6833.2020.03.010]
[7]申金媛,赵旭东,刘润杰,等.一种无线传感器网络分层拓扑推断算法[J].郑州大学学报(工学版),2011,32(03):111.[doi:10.3969/j.issn.1671-6833.2011.03.027]
[8]凡高娟,侯彦娥,王汝传..基于RSSI参数纠正的无线传感器网络应急救灾系统[J].郑州大学学报(工学版),2012,33(04):94.[doi:10.3969/j.issn.1671-6833.2012.04.022]
 FAN Gaojuan,HOU Yane,WANG Ruchuan.RSSI based Parameters Correction Emergency Disaster Response Systemof Wireless Sensor Networks[J].Journal of Zhengzhou University (Engineering Science),2012,33(01):94.[doi:10.3969/j.issn.1671-6833.2012.04.022]
[9]王志鹏,孙惠国,时斌.故障诊断的多层神经网络研究[J].郑州大学学报(工学版),1998,19(02):20.

更新日期/Last Update: 2019-03-02