[1]邓立宝,吴怡然,郭苏.基于分解多目标进化的椭圆定日镜场布局[J].郑州大学学报(工学版),2020,41(05):37-43.[doi:10.13705/j.issn.1671-6833.2020.03.012]
 DENG Libao,WU Yiran,GUO Su.Elliptical Heliostat Field Layout Optimization Based on MOEA/D[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):37-43.[doi:10.13705/j.issn.1671-6833.2020.03.012]
点击复制

基于分解多目标进化的椭圆定日镜场布局()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年05期
页码:
37-43
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Elliptical Heliostat Field Layout Optimization Based on MOEA/D
作者:
邓立宝吴怡然郭苏
哈尔滨工业大学(威海)信息科学与工程学院,山东威海264209, 河海大学能源与电气学院,江苏南京210098

Author(s):
DENG Libao1 WU Yiran1 GUO Su2
1.School of Information Science and Technology, Harbin Institute of Technology, Weihai, Weihai 264209, China; 2.College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
关键词:
Keywords:
multi-objective optimization MOEA/D solar power tower system heliostat field layout good-point set opposition-based learning normalization
DOI:
10.13705/j.issn.1671-6833.2020.03.012
文献标志码:
A
摘要:
针对塔式太阳能热电站中的定日镜场布局多目标优化问题 ,将基于分解的多目标进化算法(MOEA/D)应用于定日镜场布局领域,提出了基于改进的MOEA/D多目标定日镜场布局优化算法(MOEA/D-HFL)。首先建立了以镜场年均综合光学效率和镜场占地面积为目标的椭圓形定日镜场优化模型,接着将基于佳点集和反向学习的初始种群生成策略、目标函数稳定归一化机制以及动态遗传交叉分布指数引入MOEA/D用于求解该问题,获得了定日镜场布局问题的Pareto前沿,并利用模糊集理论获得了最优折中解。为验证所提算法的性能,将MOEA/D-HFL算法与NSGA-II和基本MOEA/D对比,仿真结果证明了MOEA/D-HFL在多目标定日镜场布局问题上的高效性与准确性。
Abstract:
To solve the multi-objective heliostat field layout optimization in solar power tower system, multi-objective evolutionary algorithm based on decomposition (MOEA/D) was introduced into the domain of heliostat field layout, and a heliostat field layout optimization algorithm based on an improved MOEA/D (MOEA/D-HFL) was proposed in this paper. In this method, firstly an elliptical heliostat field model was set up aimed at optimizing annual-averaged overall optical efficiency and the land area occupied. Secondly, initial population generation strategy based on good-point set and opposition-based learning, stable normalization of objectives and dynamic genetic crossover distribution index were applied into MOEA/D to solve this problem. Pareto front of heliostat field layout problem was obtained and optimal compromise solution was got through fuzzy set theory. To validate the performance of the proposed algorithm, MOEA/D-HFL was compared with NSGA-II and original MOEA/D algorithms, and the simulation results confirmed the effectiveness and accuracy of the proposed method.

相似文献/References:

[1]张春江,高亮,吴擎,等.基于分解的多目标进化算法在工程优化中的应用[J].郑州大学学报(工学版),2015,36(06):38.[doi:10.3969/ j. issn.1671 -6833.2015.06.008]
 ZHANG Chunjiang,TAN Kay Chen,GAO Liang,et al.Multi-Objective Evolutionary Algorithm Based on Decomposition for Engineering Optimization[J].Journal of Zhengzhou University (Engineering Science),2015,36(05):38.[doi:10.3969/ j. issn.1671 -6833.2015.06.008]
[2]邹露,颜雪松,胡成玉.突发饮用水污染下的水阀和消防栓的调度研究[J].郑州大学学报(工学版),2018,39(03):93.[doi:10.13705/j.issn.1671-6833.2018.03.006]
 Zou Luyan,Xuesong,Hu Chengyu.Research on Dispatching Algorithm of Valves and Hydrants under Sudden Drinking Water Pollution[J].Journal of Zhengzhou University (Engineering Science),2018,39(05):93.[doi:10.13705/j.issn.1671-6833.2018.03.006]
[3]汪慎文,王佳莹,张佳星,等.SI7:应用精英档案和反向学习的多目标差分进化算法[J].郑州大学学报(工学版),2020,41(06):40.[doi:10.13705/j.issn.1671-6833.2020.06.011]
 WANG Shenwen,WANG Jiaying,ZHANG Jiaxing,et al.A Multi-objective Differential Evolution Algorithm with Elite-archive and Opposition-based Learning[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):40.[doi:10.13705/j.issn.1671-6833.2020.06.011]

更新日期/Last Update: 2020-10-23