[1]宋丹青、董利虎、陈卓、杜涵.基于模态分析的大型均质岩质边坡动力响应特征研究[J].郑州大学学报(工学版),2021,42(02):1-6.[doi:10.13705/j.issn.1671-6833.2020.06.010]
 SONG Danqing,DONG Lihu,CHEN Zhuo,et al.Dynamic Response Characteristics of Large Homogeneous Rock Slopes Based on Modal Analysis[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):1-6.[doi:10.13705/j.issn.1671-6833.2020.06.010]
点击复制

基于模态分析的大型均质岩质边坡动力响应特征研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年02期
页码:
1-6
栏目:
出版日期:
2021-04-12

文章信息/Info

Title:
Dynamic Response Characteristics of Large Homogeneous Rock Slopes Based on Modal Analysis
作者:
宋丹青、董利虎、陈卓、杜涵
清华大学水沙科学与水利水电工程国家重点实验室;沈阳工业大学电气工程学院;四川大学水力学与山区河流开发保护国家重点实验室;辽宁工程技术大学矿业学院;
Author(s):
SONG Danqing1 DONG Lihu2 CHEN Zhuo3 DU Han4
National Key Laboratory of Water Sand Science and Water Conservancy and Hydropower Engineering of Tsinghua University; School of Electrical Engineering, Shenyang University of Technology; National Key Laboratory of Sichuan University Hydropology and Mountains River Development and Protection; College of Mining at Liaoning University of Engineering and Technology;
关键词:
Keywords:
large homogeneous rock slope FEM modal analysis natural frequency vibration mode dynamic response characteristic
DOI:
10.13705/j.issn.1671-6833.2020.06.010
文献标志码:
A
摘要:
以大型均质岩质边坡为研究对象,建立两个三维有限元数值模型,采用有限元方法对岩质边坡进行模态分析,获取边坡的固有频率及相应的振型,在小应变范围内研究了均质岩质边坡的动力响应特征与其固有模态的关系。研究结果表明:均质岩质边坡的固有频率随着阶次增加而增加,边坡具有典型的高程及坡表动力放大效应,坡表微地貌变化对边坡的固有频率及振型具有较大的影响;低阶(1阶和2阶)固有频率主要引起边坡整体性变形,高阶(≥3阶)固有频率主要引起坡表局部变形;边坡的五阶以下振型主要表现为弯曲、拉伸或扭转的单一变形特征,五阶以上的振型特征为多种变形的组合。
Abstract:
The large homogeneous rock slopes were taken as the research object.Two 3D FEM numerical models were established, the modal analysis of rock slope was carried out by the FEM. The natural frequency of the slopes and the corresponding vibration modes were obtained. The relationship between the dynamic response characteristics of the slopes and their inherent mode was studied in the small strain range. The results showed that the natural frequency of the slopes increased with the order, and the slope had the typical slope elevation and surface dynamic amplification effect. The gradient changes of the slope surface had a great influence on the natural frequencies and vibration modes of the slopes. Low-order (1st and 2nd order) natural frequencies mainly caused the overall deformation of the slopes, while high-order (≥3rd order) natural frequencies mainly caused local deformation of the slope surface. The modes below the fifth order were mainly characterized by a single deformation of bending, stretching or torsion, while those above the fifth order were characterized by a variety of deformation combinations.

参考文献/References:

[1] 宋丹青,王丰,梅明星,等. 水库蓄水对库岸边坡稳定性的影响[J]. 郑州大学学报(工学版), 2016,37(1):60-64.

[2] 徐锡蒙,郑粉莉,关颖慧,等. 2013年我国地震灾害时空特征与灾害损失分析[J]. 水土保持研究, 2015,22(4):321-325.
[3] DAI F C, XU C, YAO X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake,China[J]. Journal of Asian earth sciences, 2011, 40(4): 883-895.
[4] FAN X M, XU Q, SCARINGI G, et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2129-2146.
[5] CHE A L,YANG H K,WANG B,et al.Wave propagations through jointed rock masses and their effects on the stability of slopes[J].Engineering geology,2016,201:45-56.
[6] SONG D Q,CHEN Z,CHAO H, et al. Numerical study on seismic response of a rock slope with discontinuities based on the time-frequency joint analysis method[J]. Soil dynamics and earthquake engineering, 2020, 133: 106112.
[7] LIU G W,SONG D Q,CHEN Z,et al.Dynamic response characteristics and failure mechanism of coal slopes with weak intercalated layers under blasting loads[J].Advances in civil engineering,2020(9):1-18.
[8] 赖杰,刘云,辛建平,等. 大理西站支护边坡振动台试验及数值模拟[J]. 浙江大学学报(工学版), 2020,54(5):870-878.
[9] 刘树林,杨忠平,刘新荣,等. 频发微小地震作用下顺层岩质边坡的振动台模型试验与数值分析[J]. 岩石力学与工程学报, 2018,37(10):2264-2276.
[10] 朱仁杰,车爱兰,严飞,等.含贯通性结构面岩质边坡动力演化规律[J].岩土力学,2019,40(5):1907-1915.
[11] 周逸飞,刘汉香,朱星,等. 含软弱夹层岩质边坡的模态分析及其对边坡地震动力响应影响的初步研究[J]. 地震工程与工程振动, 2020,40(1):223-232.
[12] REALE C, GAVIN K, PRENDERGAST L J, et al.Multi-modal reliability analysis of slope stability[J]. Transportation research procedia, 2016, 14: 2468-2476.
[13] SONG D Q, CHE A L, ZHU R, et al. Natural frequency characteristics of rock masses containing a complex geological structure and their effects on the dynamic stability of slopes[J]. Rock mechanics and rock engineering, 2019, 52(11): 4457-4473.
[14] 詹志发,祁生文,何乃武,等.强震作用下均质岩质边坡动力响应的振动台模型试验研究[J].工程地质学报,2019,27(5):946-954.

相似文献/References:

[1]黄士涛.变厚度圆板的非线性振动[J].郑州大学学报(工学版),1996,17(03):72.
 Huang Shitao.Non -linear vibration of deformation round board[J].Journal of Zhengzhou University (Engineering Science),1996,17(02):72.

更新日期/Last Update: 2021-05-30