[1] 车玉思, 杜胜敏, 宋建勋, 等. 金属镁生产新工艺研究现状与进展[J].中国有色金属学报,2022,32(6):1719-1733.CHE Y S, DU S M, SONG J X, et al. Research status and progress of novel technology for magnesium production[J]. The Chinese Journal of Nonferrous Metals,2022,32(6):1719-1733.[2] 梁文玉, 孙晓林, 李凤善, 等. 金属镁冶炼工艺研究进展[J]. 中国有色冶金, 2020, 49(4): 36-44, 53.LIANG W Y, SUN X L, LI F S, et al. Research progress on magnesium smelting methods[J]. China Nonferrous Metallurgy, 2020, 49(4): 36-44, 53.
[3] 徐日瑶. 硅热法炼镁生产工艺学[M]. 长沙: 中南大学出版社, 2003.XU R Y. Production technology of magnesium smelting by silicothermic method[M]. Changsha: Central South University Press, 2003.
[4] 唐祁峰, 高家诚, 陈小华. 热法制镁工艺的发展概况[J]. 材料科学与工程学报, 2011, 29(1): 149-154, 98.TANG Q F, GAO J C, CHEN X H. Progress in thermal reduction process in magnesium production[J]. Journal of Materials Science and Engineering, 2011, 29(1): 149-154, 98.
[5] FRITZ H. Process of producing substantially pure magnesium: US2022282[P]. 1935-11-26.
[6] CHUBUKOV B A, ROWE S C, PALUMBO A W, et al. Investigation of continuous carbothermal reduction of magnesia by magnesium vapor condensation onto a moving bed of solid particles[J]. Powder Technology, 2020, 365: 2-11.
[7] XIONG N, TIAN Y, YANG B, et al. Results of recent investigations of magnesia carbothermal reduction in vacuum[J]. Vacuum, 2019, 160: 213-225.
[8] 王耀武, 狄跃忠, 尤晶, 等. “碳中和、碳达峰”背景下真空铝热还原炼镁的未来发展[J]. 真空, 2022, 59(4): 64-69.WANG Y W, DI Y Z, YOU J, et al. Development of magnesium production by vacuum aluminothermic reduction under the background of carbon emission peak and carbon neutrality[J]. Vacuum, 2022, 59(4): 64-69.
[9] GAO F, NIE Z R, WANG Z H, et al. Assessing environmental impact of magnesium production using Pidgeon process in China[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(3): 749-754.
[10] RAMAKRISHNAN S, KOLTUN P. Global warming impact of the magnesium produced in China using the Pidgeon process[J]. Resources, Conservation and Recycling, 2004, 42(1): 49-64.
[11] 郑家喜. 脉冲燃烧技术在双蓄热式炼镁还原炉中的应用[J]. 有色冶金节能, 2010, 26(5): 24-26.ZHENG J X. Application of pulse combustion technology in double-regenerative magnesium reduction furnace[J]. Energy Saving of Nonferrous Metallurgy, 2010, 26(5): 24-26.
[12] G LVEZ M E, FREI A, ALBISETTI G, et al. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions: thermodynamic and kinetic analyses[J]. International Journal of Hydrogen Energy, 2008, 33(12): 2880-2890.
[13] 刘勇, 游国强, 黄彦彦. 竖罐炼镁技术的发展现状和展望[J]. 轻金属, 2011(6): 45-49.LIU Y, YOU G Q, HUANG Y Y. Current situation and development of vetical retort magnesium reduction process[J]. Light Metals, 2011(6): 45-49.
[14] 车玉思, 王成铎, 孙玉福, 等. 大型竖式还原罐壁面温度分布特性研究[J]. 郑州大学学报(工学版), 2018, 39(3): 87-92.CHE Y S, WANG C D, SUN Y F, et al. Research of wall temperature distribution of large vertical reduction pot[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 87-92.
[15] 任玲, 夏德宏, 毕寒冰. 新型竖置镁还原罐的设计[J]. 有色金属(冶炼部分), 2012(2): 30-33.REN L, XIA D H, BI H B. Design of new type of vertical magnesium reduction jar[J]. Nonferrous Metals (Extractive Metallurgy), 2012(2): 30-33.
[16] 杨沛胥, 张少军, 车玉思, 等. 一种冶炼镁金属的还原罐: CN206736328U[P]. 1970-01-18.YANG P X, ZHANG S J, CHE Y S, et al. Reducing tank for smelting magnesium metal: CN206736328U[P]. 1970-01-19.
[17] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002.GUO L J. Two phase and multiphase flow dynamics [M]. Xi′an: Xi′an Jiaotong University Press, 2002.
[18] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004.DA D A. Vacuum design manual [M]. Beijing: National Defense Industry Press, 2004.
[19] 张以忱. 真空系统设计[M]. 北京: 冶金工业出版社, 2013.ZHANG Y C. Vacuum system design[M].Beijing: Metal-lurgical Industry Press, 2013.
[20] 黄淑清, 聂宜如, 申先甲. 热学教程[M]. 北京: 高等教育出版社, 2011.HUANG S Q, NIE Y R, SHEN X J. Thermology course[M]. Beijing: Higher Education Press, 2011.
[21] 夏绍龙. 金属蒸气冷凝法制取高纯镁粉[J]. 轻金属, 1987(6): 44-48.XIA S L. Preparation of high purity magnesium powder by metal vapor condensation [J]. Light Medals, 1987(6): 44-48.
[22] LI R B, ZHANG C, ZHANG S J, et al. Experimental and numerical modeling studies on production of Mg by vacuum silicothermic reduction of CaO·MgO[J]. Metallurgical and Materials Transactions B, 2014, 45(1): 236-250.