[1]陈 毛,张少军,李荣斌,等.竖罐炼镁过程中镁蒸气流动相变规律[J].郑州大学学报(工学版),2023,44(04):88-93.[doi:10.13705/j.issn.1671-6833.2023.01.014]
 CHEN Mao,ZHANG Shaojun,LI Rongbin,et al.Flow and Phase Change Characteristics of Magnesium Vapor in Vertical Retort During Silicothermic Process[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):88-93.[doi:10.13705/j.issn.1671-6833.2023.01.014]
点击复制

竖罐炼镁过程中镁蒸气流动相变规律()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
88-93
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Flow and Phase Change Characteristics of Magnesium Vapor in Vertical Retort During Silicothermic Process
作者:
陈 毛1 张少军1 李荣斌2 南俊杰2 刘金辉1 杨沛胥1
1.郑州大学 材料科学与工程学院,河南 郑州 450001, 2.北京科技大学 冶金与生态工程学院,北京 100083

Author(s):
CHEN Mao ZHANG Shaojun LI Rongbin NAN Junjie LIU Jinhui YANG Peixu
School of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, Henan, School of Metallurgy and Ecological Engineering, Beijing University of Science and Technology, Beijing 100083

关键词:
镁冶炼 镁蒸气 竖罐 硅热法 流动阻力
Keywords:
magnesium smelting magnesium vapor vertical retort silicothermic process flow resistance
分类号:
TF822
DOI:
10.13705/j.issn.1671-6833.2023.01.014
文献标志码:
A
摘要:
皮江法炼镁工艺中,掌握镁蒸气流动和结晶规律是获得高质量结晶镁的关键。 针对这一问题,研究 了复式竖罐内镁蒸气从还原反应区流动到结晶区过程中的流动规律,并通过引入高温稀薄气体中流导的概 念给出了镁蒸气流动过程阻力计算方法,推导出镁蒸气流动阻力与还原罐内径、运动距离以及压强之间的关 系式。 结果表明:镁蒸气的结晶过程不仅受温度和压强影响,还与结晶器的内径相关,适当减小结晶器内径 可获得致密度较高的结晶镁;镁蒸气从复式竖罐中的反应区流动到结晶区,镁蒸气的总压降约为 150 Pa,还原 反应区平均压强数量级在百帕以上;镁冶炼初期,部分料球温度低于 600 ℃ 时,镁蒸气以“ 凝华-升华” 的方式 在反应区层移,随着料球整体温度升高到 600 ℃ 以上,镁蒸气流动阻力减小,能够顺利进入结晶器结晶。
Abstract:
In the Pidgeon magnesium smelting process, mastering the laws of magnesium vapor flow and crystallization is the key to obtaining high-quality crystalline magnesium. In this paper, the flow characteristic of magnesium vapor in the compound vertical retort from the reduction reaction zone to the crystallization zone was studied. The calculation method of flow resistance was given by introducing the concept of conductance in hightemperature rarefied gas. The relationship between flow resistance and the retort inner diameter, retort size, vapor pressure was deduced. It is shown that the crystallization process of magnesium vapor is not only affected by temperature and pressure, but also related to the diameter of the crystallizer. Appropriately reducing the inner diameter of the crystallizer can obtain crystalline magnesium with higher density. The total pressure loss of magnesium vapor in the compound vertical retort from the reaction zone to crystallization zone is about 150 Pa, and the average working pressure in the reaction zone is higher than two order of magnitude. In the early stage of magnesium smelting, when the temperature of part of the pellets is lower than 600 ℃ , the magnesium vapor moves in the reaction zone in a “condensation-sublimation” manner. As the temperature of the overall pellet rises above 600 ℃ , the flow resistance of magnesium vapor decreases, and it can smoothly enter the crystallizer for crystallization

参考文献/References:

[1] 车玉思, 杜胜敏, 宋建勋, 等. 金属镁生产新工艺研究现状与进展[J].中国有色金属学报,2022,32(6):1719-1733.CHE Y S, DU S M, SONG J X, et al. Research status and progress of novel technology for magnesium production[J]. The Chinese Journal of Nonferrous Metals,2022,32(6):1719-1733.

[2] 梁文玉, 孙晓林, 李凤善, 等. 金属镁冶炼工艺研究进展[J]. 中国有色冶金, 2020, 49(4): 36-44, 53.LIANG W Y, SUN X L, LI F S, et al. Research progress on magnesium smelting methods[J]. China Nonferrous Metallurgy, 2020, 49(4): 36-44, 53.
[3] 徐日瑶. 硅热法炼镁生产工艺学[M]. 长沙: 中南大学出版社, 2003.XU R Y. Production technology of magnesium smelting by silicothermic method[M]. Changsha: Central South University Press, 2003.
[4] 唐祁峰, 高家诚, 陈小华. 热法制镁工艺的发展概况[J]. 材料科学与工程学报, 2011, 29(1): 149-154, 98.TANG Q F, GAO J C, CHEN X H. Progress in thermal reduction process in magnesium production[J]. Journal of Materials Science and Engineering, 2011, 29(1): 149-154, 98.
[5] FRITZ H. Process of producing substantially pure magnesium: US2022282[P]. 1935-11-26.
[6] CHUBUKOV B A, ROWE S C, PALUMBO A W, et al. Investigation of continuous carbothermal reduction of magnesia by magnesium vapor condensation onto a moving bed of solid particles[J]. Powder Technology, 2020, 365: 2-11.
[7] XIONG N, TIAN Y, YANG B, et al. Results of recent investigations of magnesia carbothermal reduction in vacuum[J]. Vacuum, 2019, 160: 213-225.
[8] 王耀武, 狄跃忠, 尤晶, 等. “碳中和、碳达峰”背景下真空铝热还原炼镁的未来发展[J]. 真空, 2022, 59(4): 64-69.WANG Y W, DI Y Z, YOU J, et al. Development of magnesium production by vacuum aluminothermic reduction under the background of carbon emission peak and carbon neutrality[J]. Vacuum, 2022, 59(4): 64-69.
[9] GAO F, NIE Z R, WANG Z H, et al. Assessing environmental impact of magnesium production using Pidgeon process in China[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(3): 749-754.
[10] RAMAKRISHNAN S, KOLTUN P. Global warming impact of the magnesium produced in China using the Pidgeon process[J]. Resources, Conservation and Recycling, 2004, 42(1): 49-64.
[11] 郑家喜. 脉冲燃烧技术在双蓄热式炼镁还原炉中的应用[J]. 有色冶金节能, 2010, 26(5): 24-26.ZHENG J X. Application of pulse combustion technology in double-regenerative magnesium reduction furnace[J]. Energy Saving of Nonferrous Metallurgy, 2010, 26(5): 24-26.
[12] G LVEZ M E, FREI A, ALBISETTI G, et al. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions: thermodynamic and kinetic analyses[J]. International Journal of Hydrogen Energy, 2008, 33(12): 2880-2890.
[13] 刘勇, 游国强, 黄彦彦. 竖罐炼镁技术的发展现状和展望[J]. 轻金属, 2011(6): 45-49.LIU Y, YOU G Q, HUANG Y Y. Current situation and development of vetical retort magnesium reduction process[J]. Light Metals, 2011(6): 45-49.
[14] 车玉思, 王成铎, 孙玉福, 等. 大型竖式还原罐壁面温度分布特性研究[J]. 郑州大学学报(工学版), 2018, 39(3): 87-92.CHE Y S, WANG C D, SUN Y F, et al. Research of wall temperature distribution of large vertical reduction pot[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 87-92.
[15] 任玲, 夏德宏, 毕寒冰. 新型竖置镁还原罐的设计[J]. 有色金属(冶炼部分), 2012(2): 30-33.REN L, XIA D H, BI H B. Design of new type of vertical magnesium reduction jar[J]. Nonferrous Metals (Extractive Metallurgy), 2012(2): 30-33.
[16] 杨沛胥, 张少军, 车玉思, 等. 一种冶炼镁金属的还原罐: CN206736328U[P]. 1970-01-18.YANG P X, ZHANG S J, CHE Y S, et al. Reducing tank for smelting magnesium metal: CN206736328U[P]. 1970-01-19.
[17] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002.GUO L J. Two phase and multiphase flow dynamics [M]. Xi′an: Xi′an Jiaotong University Press, 2002.
[18] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004.DA D A. Vacuum design manual [M]. Beijing: National Defense Industry Press, 2004.
[19] 张以忱. 真空系统设计[M]. 北京: 冶金工业出版社, 2013.ZHANG Y C. Vacuum system design[M].Beijing: Metal-lurgical Industry Press, 2013.
[20] 黄淑清, 聂宜如, 申先甲. 热学教程[M]. 北京: 高等教育出版社, 2011.HUANG S Q, NIE Y R, SHEN X J. Thermology course[M]. Beijing: Higher Education Press, 2011.
[21] 夏绍龙. 金属蒸气冷凝法制取高纯镁粉[J]. 轻金属, 1987(6): 44-48.XIA S L. Preparation of high purity magnesium powder by metal vapor condensation [J]. Light Medals, 1987(6): 44-48.
[22] LI R B, ZHANG C, ZHANG S J, et al. Experimental and numerical modeling studies on production of Mg by vacuum silicothermic reduction of CaO·MgO[J]. Metallurgical and Materials Transactions B, 2014, 45(1): 236-250.

更新日期/Last Update: 2023-07-01