[1]郭成超,张顺杰,周鸿昌,等.移动荷载作用下机场复合道面力学响应分析[J].郑州大学学报(工学版),2023,44(04):113-119.[doi:10.13705/j.issn.1671-6833.2023.01.015]
 GUO Chengchao,ZHANG Shunji,ZHOU Hongchang,et al.Mechanical Response Analysis of Airport Composite Pavement under Moving Load[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):113-119.[doi:10.13705/j.issn.1671-6833.2023.01.015]
点击复制

移动荷载作用下机场复合道面力学响应分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
113-119
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Mechanical Response Analysis of Airport Composite Pavement under Moving Load
作者:
郭成超12张顺杰1周鸿昌2刁岳亮1闫卫红13
1.郑州大学 水利科学与工程学院,河南 郑州 450001, 2.中山大学 土木工程学院,广东 广州 510275, 3.河南省机场集团有限公司,河南 郑州 451163

Author(s):
GUO ChengchaoZHANG ShunjiZHOU HongchangDIAO YueliangYAN Weihong
School of Water Conservancy Science and Engineering, Zhengzhou University, 450001, Zhengzhou, Henan, School of Civil Engineering, Sun Yat -sen University, Guangzhou 510275, School of Water Conservancy Science and Engineering, Zhengzhou University, Henan Zhengzhou 450001, School of Civil Engineering, Sun Yat -sen University, Guangzhou Guangzhou 510275, Zhengzhou University Water Conservancy Science and Engineering College, Henan Zhengzhou 450001, Henan Airport Group Co., Ltd., Henan Zhengzhou 451163

关键词:
复合道面 多层加铺 有限元模型 移动荷载 力学响应
Keywords:
composite pavement multi-layer overlay finite element model moving load mechanical response
分类号:
U416.223;V351.11
DOI:
10.13705/j.issn.1671-6833.2023.01.015
文献标志码:
A
摘要:
为了研究复合道面的力学特性,以中原地区某机场加铺改造项目为研究对象,建立了复合道面有限 元模型。 通过建立的复合道面监测系统,提取出了道面在目标机型作用下的力学响应,并与模拟数据进行对 比,验证了模型的合理性。 在移动荷载作用下,分析了道面在考虑不同机型、不同层间结合状态及不同水平 力等因素下的力学响应。 研究发现,道面在 B737-800、B767-300ER 和 B777-300ER 这 3 种机型作用下,沥青加 铺层的剪应力最大值出现在上面层,并且随着轮数的增加,道面力学指标逐渐增加,其中沥青层底横向拉应 变与水泥混凝土板底拉应力的变化比较明显;随着层间结合系数的增加,道面力学指标呈减小趋势,沿着道 面深度方向,其影响程度逐渐减小;在有紧急水平制动力时,沥青层间最大剪应力增加了 11. 84%,沥青层底 横向最大拉应变增加了 6. 05%,纵向拉应变增加了 9. 68%。
Abstract:
In order to study the mechanical properties of the composite pavement, a finite element model of the composite pavement is established based on the overlay reconstruction project of an airport in the central plains region. Through the established composite pavement monitoring system, the mechanical response of the pavement under the action of the target aircraft type is extracted and compared with the simulation data to verify the rationality of the model. Under the action of moving load, the mechanical response of pavement considering different types of aircraft, different interlayer bonding states and different horizontal forces is analyzed. It is found that under the action of B737-800, B767-300ER and B777-300ER, the maximum shear stress of asphalt overlay appears in the upper layer, and with the increase of the number of rounds, the mechanical index of pavement gradually increases, in which the transverse tensile strain at the bottom of asphalt layer and the tensile stress at the bottom of cement concrete slab change significantly; With the increase of interlayer bonding coefficient, the pavement mechanical index shows a decreasing trend, and its influence degree gradually decreases along the pavement depth direction; When there is emergency horizontal braking force, the maximum shear stress between asphalt layers increases by 11. 84%, the maximum transverse tensile strain at the bottom of asphalt layer increases by 6. 05%, and the longitudinal tensile strain increases by 9. 68%.

参考文献/References:

[1] 张伟, 彭妙娟. 机场复合道面基层裂缝的断裂力学分析[J]. 中外公路, 2017, 37(6): 65-70.ZHANG W, PENG M J. Fracture mechanics analysis of cracks in airport composite pavement base[J]. Journal of China &Foreign Highway, 2017, 37(6): 65-70.

[2] 游庆龙, 赵胜前, 罗志刚, 等. 机场复合式道面力学响应敏感性分析[J]. 公路交通科技, 2021, 38(1): 50-58.YOU Q L, ZHAO S Q, LUO Z G, et al. Analysis on sensitivity of mechanical response of airfield composite pavement[J]. Journal of Highway and Transportation Research and Development, 2021, 38(1): 50-58.
[3] WEI F L, CAO J F, ZHAO H D, et al. Laboratory investigation on the interface bonding between Portland cement concrete pavement and asphalt overlay[J]. Mathematical Problems in Engineering, 2021, 2021: 1-11.
[4] MA X Y, DONG Z J, CHEN F C, et al. Airport asphalt pavement health monitoring system for mechanical model updating and distress evaluation under realistic random aircraft loads[J]. Construction and Building Materials, 2019, 226: 227-237.
[5] LI S, LIU X W, LIU Z H. Interlaminar shear fatigue and damage characteristics of asphalt layer for asphalt overlay on rigid pavement[J]. Construction and Building Mate-rials, 2014, 68: 341-347.
[6] 赵鸿铎, 马鲁宽. 基于实测数据的机场水泥道面变温效应分析[J]. 同济大学学报(自然科学版), 2019, 47(12): 1764-1771.ZHAO H D, MA L K. Investigation into effects of temperature variations on airport cement pavements based on measured data[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1764-1771.
[7] 蔡靖, 李岳, 常欢. 转弯移动荷载下机场复合道面轮辙研究[J]. 土木工程学报, 2018, 51(8): 118-128.CAI J, LI Y, CHANG H. Rutting analysis of airport composite pavement under turning moving load[J]. China Civil Engineering Journal, 2018, 51(8): 118-128.
[8] 张献民, 孔伟斌, 刘小兰. 行车荷载作用下路面结构动位移响应分析[J]. 西南交通大学学报, 2020, 55(2): 357-363.ZHANG X M, KONG W B, LIU X L. Dynamic displacement response of pavement structure under moving vehicle load[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 357-363.
[9] LIU Z, GU X Y, REN H, et al. Analysis of the dynamic responses of asphalt pavement based on full-scale accelerated testing and finite element simulation[J]. Construction and Building Materials, 2022, 325: 126429.
[10] 李炜光, 国洋, 汤豆, 等. 机场道面沥青加铺结构分区域差异设计研究[J]. 郑州大学学报(工学版), 2018, 39(5): 91-96.LI W G, GUO Y, TANG D, et al. Study on regional difference design of asphalt overlay in airport pavement[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(5): 91-96.
[11] 朱杰涛. 基于平整度劣化条件下机场复合道面力学性能研究[D]. 天津: 中国民航大学, 2018.ZHU J T. Study on mechanical properties of airport composite pavement based on deterioration of flatness[D]. Tianjin: Civil Aviation University of China, 2018.
[12] 周正峰, 凌建明. 基于ABAQUS的机场刚性道面结构有限元模型[J]. 交通运输工程学报, 2009, 9(3): 39-44.ZHOU Z F, LING J M. Finite element model of airport rigid pavement structure based on ABAQUS[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 39-44.
[13] 张献民, 李梦晓, 陈宇, 等. 机场跑道水泥混凝土道面板尺寸分析[J]. 北京航空航天大学学报, 2022, 48(4): 551-559.ZHANG X M, LI M X, CHEN Y, et al. Size of cement concrete pavement slab of airport runway[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 551-559.
[14] 秦磊. 飞机荷载及地下水作用下机场道基的变形研究[D]. 郑州: 郑州大学, 2017.QIN L. Study on deformation of airport pavement foundation under the action of aircraft loads and groundwater[D]. Zhengzhou: Zhengzhou University, 2017.[15] 游庆龙, 李京洲, 罗志刚, 等. 飞机轮载作用下机场复合式道面结构力学分析[J]. 江苏大学学报(自然科学版), 2020, 41(1): 111-117.YOU Q L, LI J Z, LUO Z G, et al. Mechanical analysis of airport composite pavement structure under aircraft wheel load[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(1): 111-117.
[16] 钱朝清. 机场复合道面受多轮荷载作用的力学特性分析[J]. 中外公路, 2016, 36(3): 81-84.QIAN C Q. Analysis of mechanical characteristics of airport composite pavement under multi wheel load [J]. Journal of China &Foreign Highway, 2016, 36(3): 81-84.

更新日期/Last Update: 2023-07-01