[1]朱军勇,陈田田,韩双乔,等.共价有机框架液体分离膜的研究进展[J].郑州大学学报(工学版),2023,44(01):13-23.[doi:10.13705/j.issn.1671-6833.2023.01.019]
 ZHU Junyong,CHEN Tiantian,HAN Shuangqiao,et al.Research Progress of Covalent Organic Framework Membranes for Liquid-based Separations[J].Journal of Zhengzhou University (Engineering Science),2023,44(01):13-23.[doi:10.13705/j.issn.1671-6833.2023.01.019]
点击复制

共价有机框架液体分离膜的研究进展()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年01期
页码:
13-23
栏目:
出版日期:
2022-12-06

文章信息/Info

Title:
Research Progress of Covalent Organic Framework Membranes for Liquid-based Separations
作者:
朱军勇12 陈田田12 韩双乔12 张亚涛12
1.郑州大学化工学院,河南郑州 450001, 2.郑州大学先进功能材料制造教育部工程研究中心,河南郑州 450001

Author(s):
ZHU Junyong12 CHEN Tiantian12 HAN Shuangqiao12 ZHANG Yatao12
1.School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
covalent organic framework membrane liquid separation interfacial polymerization fabrication and application
分类号:
O69;TQ028. 8
DOI:
10.13705/j.issn.1671-6833.2023.01.019
文献标志码:
A
摘要:
传统聚合物膜由于受到渗透通量与选择性的权衡关系的制约,严重阻碍了其在液体分离领域的进一步发展和应用。共价有机框架(Covalent organic fr<x>ameworks, COFs)作为一类新兴的结晶多孔材料,在开发具有快速分子/离子传输和精准筛分领域具有很大的前景。本文从COF膜结构和表面理化性质出发,讨论了COFs的孔径、稳定性、亲疏水性以及表面电荷对COF膜结构与性能的影响,并阐述了这些性质在膜分离过程中的重要作用,同时深入探讨了COF膜结构与功能之间的内在联系;简述了调控COFs特性以优化膜性能的方法,主要包括筛选/预先设计单体合成COF膜和对COF膜进行后修饰的策略。此外,重点介绍了多种先进COF膜的制备策略:共混、原位生长、真空辅助过滤和界面聚合等,并且综述了COF膜在海水淡化、污水处理、有机溶剂纳滤和渗透能量转换等领域的最新研究进展。最后,从膜材料的制备与商业化需求等方面,提出了当前COF膜所面临的挑战、机遇和未来发展趋势,为新型功能性COF膜的“按需设计”提供一定启示,并为COF膜在液体分离领域的发展和应用提供参考和借鉴。
Abstract:
Due to the trade-off limit between membrane flux and selectivity, the development and application of traditional polymer membranes in liquid separation are further impeded. Covalent organic frameworks (COF) are a newly emerging class of porous materials, which hold great promise for developing high-performance membranes with rapid molecule/ion transport and high-efficient liquid separations. In this review, the effects of pore size, stability, hydrophilicity/hydrophobicity and surface charge on the physicochemical properties, pore structures, and separation properties of COF structure-function relationship of COF membranes was discussed. The strategies of regulating the COF properties to optimize membrane performance were briefly described, mainly including selection/pre-design of monomers to synthesize COF membranes and post-modification of COF membranes. In addition, the fabrication strategies of advanced COF membranes were highlighted: blending, in-situ growth, vacuum-assisted filtration and interfacial polymerization. Also, the latest research advances of COF membranes in seawater desalination, sewage treatment, organic solvent nanofiltration and osmotic energy conversion were outlined. Finally, in view of membrane material preparation and commercialization requirements, the current challenges and future development trends of COF membranes were proposed, providing inspiration for the “on-demand design” of new functional COF membranes and useful guideline for the development and practical application of COF membranes for liquid separation.

参考文献/References:

[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [ J] . Nature, 2012, 488 (7411) : 294-303.

[2] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades [ J ] . Nature, 2008, 452 ( 7185 ) : 301-310. 
[3] SHOLL D S, LIVELY R P. Seven chemical separations to change the world [ J ] . Nature, 2016, 532 ( 7600 ) : 435-437. 
[4] ABDIKHEIBARI S, LEI W W, DUMÉE L F, et al. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride / polypiperazine amide with enhanced flux and fouling resistance[ J] . Journal of materials chemistry A, 2018, 6(25) : 12066-12081.
[5] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity [ J ] . Science, 2017, 356 (6343) : eaab0530.
[6] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature reviews materials, 2016, 1: 16018. 
[7] KIM J Y, OH H, MOON H R. Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metalorganic frameworks, and covalent organic frameworks [ J] . Advanced materials, 2019, 31(20) : 1805293. 
[8] VAN de VOORDE B, BUEKEN B, DENAYER J, et al. Adsorptive separation on metal-organic frameworks in the liquid phase [ J ] . Chemical society reviews, 2014, 43 (16) : 5766-5788. 
[9] ZHU J Y, YUAN S S, WANG J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations [ J ] . Progress in polymer science, 2020, 110: 101308. 
[10] ZHANG C, WU B H, MA M Q, et al. Ultrathin metal / covalent-organic framework membranes towards ultimate separation [ J ] . Chemical society reviews, 2019, 48 (14) : 3811-3841.
[11] 帕提曼·尼扎木丁, 玛日耶姆·图尔贡, 阿布力孜·伊 米提. MOFs 薄膜的可控制备及在光波导气体传感器 中的应 用 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2019, 40 (6) : 53-56. 
PATIMA N, MARYAMGUL T, ABLIZ Y. Controllable fabrication of MOFs film and application in optical waveguide gas sensor[ J] . Journal of Zhengzhou university ( engineering science) , 2019, 40(6) : 53-56.
[12] FENG X, DING X S, JIANG D L. Covalent organic frameworks [ J ] . Chemical society reviews, 2012, 41 (18) : 6010-6022. 
[13] ZHANG G, TSUJIMOTO M, PACKWOOD D, et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach[ J] . Journal of the American chemical society, 2018, 140 ( 7) : 2602-2609.
[14] QIAN C, QI Q Y, JIANG G F, et al. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange[ J]. Journal of the American chemical society, 2017, 139(19): 6736-6743. [15] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [ J ] . Science, 2005, 310(5751) : 1166-1170.
[16] DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[ J] . Journal of the American chemical society, 2017, 139(37) : 13083-13091. 
[17] SHINDE D B, CAO L, WONANKE A D D, et al. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving[J]. Chemical science, 2020, 11(21): 5434-5440. [18] LIU C Y, JIANG Y Z, NALAPARAJU A, et al. Postsynthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment[ J] . Journal of materials chemistry A, 2019, 7(42) : 24205-24210. 
[19] YANG H, YANG L X, WANG H J, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations[ J] . Nature communications, 2019, 10: 2101. 
[20] LI Y, WU Q X, GUO X H, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[ J] . Nature communications, 2020, 11: 599.
[21] EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[ J] . Science, 2007, 316(5822) : 268-272.
[22] GUAN X Y, CHEN F Q, FANG Q R, et al. Design and applications of three dimensional covalent organic frameworks[ J ] . Chemical society reviews, 2020, 49 ( 5 ) : 1357-1384.
[23] SHI X S, ZHANG Z P, YIN C C, et al. Design of threedimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration[ J]. Angewandte chemie international edition, 2022, 61(36): e202207559. 
[24] EVANS A M, RYDER M R, JI W, et al. Trends in the thermal stability of two-dimensional covalent organic frameworks[J]. Faraday discussions, 2021, 225: 226-240. 
[25] CUSIN L, PENG H J, CIESIELSKI A, et al. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks[ J] . Angewandte Chemie international edition, 2021, 60 ( 26) : 14236-14250. 
[26] REN X R, BAI B, ZHANG Q S, et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction[ J] . Journal of the American chemical society, 2022, 144(6) : 2488-2494. [27] YANG Y L, YU L, CHU T C, et al. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration [ J ] . Nature communications, 2022, 13: 2615.
[28] LU Z W, YANG C Y, HE L, et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity[ J] . Journal of the American chemical society, 2022, 144(22) : 9624-9633. 
[29] YANG S Z, YANG C Q, DUN C C, et al. Covalent organic frameworks with irreversible linkages via reductive cyclization of imines[ J] . Journal of the American chemical society, 2022, 144(22) : 9827-9835. 
[30] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical ( acid / base ) stability via a combined reversible and irreversible route[ J] . Journal of the American chemical society, 2012, 134(48) : 19524- 19527. 
[31] ZHOU L H, LI X F, CAO K C, et al. Covalent organic framework membrane with Turing structures for deacidification of highly acidic solutions[ J] . Advanced functional materials, 2022, 32(9) : 2108178.
[32] FRITZ P W, COSKUN A. Postfunctionalized covalent organic frameworks for water harvesting [ J] . ACS central science, 2022, 8(7) : 871-873. 
[33] ZHANG Y Q, GUO J, HAN G, et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving[ J] . Science advances, 2021, 7(13) : 1-9. 
[34] KUEHL V A, YIN J S, DUONG P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[ J]. Journal of the American chemical society, 2018, 140(51): 18200-18207. 
[35] ZHAO S, JIANG C H, FAN J C, et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation[J]. Nature materials, 2021, 20(11): 1551-1558. 
[36] MOHAMMED A K, AL KHOORI A A, ADDICOAT M A, et al. Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching[ J] . Angewandte chemie, 2022, 134(13) : e202200905.
[37] YUAN S S, LI X, ZHU J Y, et al. Covalent organic frameworks for membrane separation[ J] . Chemical society reviews, 2019, 48(10) : 2665-2681. 
[38] XIAN W P, ZUO X H, ZHU C J, et al. Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations[ J] . Nature communications, 2022, 13: 3386. 
[39] YOU X, CAO L, LIU Y, et al. Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion[ J] . ACS nano, 2022, 16: 11781-11791. 
[40] HOU L X, XIAN W P, BING S S, et al. Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations[ J] . Advanced functional materials, 2021, 31(16) : 2009970. 
[41] CAO L, CHEN I C, CHEN C L, et al. Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes [ J] . Journal of the American chemical society, 2022, 144(27) : 12400-12409.
[42] YU X Q, LI C Y, CHANG J H, et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks[ J] . Angewandte chemie international edition, 2022, 61(13) : e202200820. 
[43] DUONG P H H, KUEHL V A, MASTOROVICH B, et al. Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes [ J ] . Journal of membrane science, 2019, 574: 338-348.
[44] HAN S Q, MAI Z H, WANG Z, et al. Covalent organic framework-mediated thin-film composite polyamide membranes toward precise ion sieving[ J] . ACS applied materials & interfaces, 2022, 14(2) : 3427-343[45] KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes [ J ] . Advanced materials, 2017, 29(2) : 1603945.
[46] YAO L, RODRÍGUEZ-CAMARGO A, XIA M, et al. Covalent organic framework nanoplates enable solutionprocessed crystalline nanofilms for photoelectrochemical hydrogen evolution[ J] . Journal of the American chemical society, 2022, 144(23) : 10291-10300. 
[47] PAN F S, GUO W X, SU Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[ J] . Separation and purification technology, 2019, 215: 582-589.
[48] GUO Z Y, JIANG H F, WU H, et al. Oil-water-oil triphase synthesis of ionic covalent organic framework nanosheets[ J] . Angewandte chemie international edition, 2021, 60(52) : 27078-27085.
[49] YAO J, LIU C, LIU X Q, et al. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into largearea, few-layer nanosheets for high flux and selective molecular separation membrane[ J] . Journal of membrane science, 2020, 601: 117864.
[50] JIN Y H, HU Y M, ORTIZ M, et al. Confined growth of ordered organic frameworks at an interface[ J] . Chemical society reviews, 2020, 49(14) : 4637-4666. 
[51] ZHANG S L, ZHAO S, JING X C, et al. Covalent organic framework-based membranes for liquid separation[ J]. Organic chemistry frontiers, 2021, 8(14): 3943-3967. 
[52] WANG X Y, SHI B B, YANG H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity [ J ] . Nature communications, 2022, 13: 1020. 
[53] YANG R J, LIU S S, SUN Q, et al. Potential differencemodulated synthesis of self-standing covalent organic framework membranes at liquid / liquid interfaces [ J ] . Journal of the American chemical society, 2022, 144 (26) : 11778-11787. 
[54] MATSUMOTO M, VALENTINO L, STIEHL G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem, 2018, 4(2): 308-317. 
[55] SHINDE D B, SHENG G, LI X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[ J] . Journal of the American chemical society, 2018, 140(43) : 14342-14349.
[56] SHEVATE R, SHAFFER D L. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport[ J] . ACS nano, 2022, 16(2) : 2407-2418.
[57] LIU M H, LIU Y X, DONG J C, et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion [ J ] . Nature communications, 2022, 13: 1411. 
[58] WANG M D, ZHANG P H, LIANG X, et al. Ultrafast seawater desalination with covalent organic framework membranes [ J ] . Nature sustainability, 2022, 5 ( 6 ) : 518-526.
[59] KHAN N A, ZHANG R N, WANG X Y, et al. Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport [ J ] . Nature communications, 2022, 13: 3169. 
[60] XIN W W, QIAN Y C, NIU B, et al. Tunable molecular transport and sieving enabled by covalent organic framework with programmable surface charge[ J] . Materials today, 2021, 51: 56-64.
[61] SHENG F M, LI X Y, LI Y Y, et al. Cationic covalent organic framework membranes for efficient dye / salt separation [J]. Journal of membrane science, 2022, 644: 120118.
[62] 张浩勤,秦国胜,张秋楠,等. 染料脱盐纳滤膜分离性 能表征[ J] . 郑州大学学报( 工学版) , 2015, 36( 3) : 73-76. 
ZHANG H Q, QIN G S, ZHANG Q N, et al. Separation performance characterization of the NF membrane with dye desalination [ J ] . Journal of Zhengzhou university ( engineering science) , 2015, 36(3) :73-76.
[63] ZHENG Y, SHEN J L, YUAN J Q, et al. 2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination[ J] . Desalination, 2022, 532: 115753. 
[64] 金业豪, 冯孝权, 朱军勇, 等. 有机溶剂纳滤传递模 型及最新膜材料研究进展 [ J] . 化工进展, 2021, 40 (11) : 6181-6194. 
JIN Y H, FENG X Q, ZHU J Y, et al. Research progress in transfer models and membrane materials for organic solvent nanofiltration [ J ] . Chemical industry and engineering progress, 2021, 40(11) : 6181-6194. 
[65] YUAN J Q, YOU X D, KHAN N A, et al. Photo-tailored heterocrystalline covalent organic framework membranes for organics separation [ J ] . Nature communications, 2022, 13: 3826.
[66] YANG J L, TU B, ZHANG G J, et al. Advancing osmotic power generation by covalent organic framework monolayer [ J ] . Nature nanotechnology, 2022, 17 ( 6 ) : 622-628. 
[67] ZUO X H, ZHU C J, XIAN W P, et al. Thermo-osmotic energy conversion enabled by covalent-organic-framework membranes with record output power density[J]. Angewandte chemie international edition, 2022, 61(18): e202116910.

更新日期/Last Update: 2022-12-06