[1]高建设,刘陆骐,王 杰,等.基于模糊控制的上肢康复机器人变导纳控制[J].郑州大学学报(工学版),2024,45(01):12-20.[doi:10.13705/j.issn.1671-6833.2024.01.002]
 GAO Jianshe,LIU Luqi,WANG Jie,et al.Variable Admittance Control of Upper Limb Rehabilitation Robot Based on Fuzzy Control[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):12-20.[doi:10.13705/j.issn.1671-6833.2024.01.002]
点击复制

基于模糊控制的上肢康复机器人变导纳控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年01期
页码:
12-20
栏目:
出版日期:
2024-01-19

文章信息/Info

Title:
Variable Admittance Control of Upper Limb Rehabilitation Robot Based on Fuzzy Control
作者:
高建设 刘陆骐 王 杰 李雪晓 丁顺良 高亦阳 王 轩
1. 郑州大学 机械与动力工程学院,河南 郑州 450001;2. 安阳鑫盛机床股份有限公司, 河南 安阳 455000
Author(s):
GAO Jianshe LIU Luqi WANG Jie LI Xuexiao DING Shunliang GAO Yiyang WANG Xuan
1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China;2. Anyang Xinsheng Machine Tool Co. , Ltd. , Anyang 455000, China
关键词:
导纳控制 模糊控制 人机交互力 上肢康复机器人 康复训练
Keywords:
admittance control fuzzy control human-computer interaction force upper limb rehabilitation robot rehabilitation training
DOI:
10.13705/j.issn.1671-6833.2024.01.002
文献标志码:
A
摘要:
传统固定参数的导纳模型无法对上肢康复机器人的柔顺性实时调节,而现有变参数导纳模型需要结合实 际康复需求进行改善。 为此,以自主研发的串并混联的末端牵引式上肢康复机器人为研究对象,结合模糊控制与 导纳控制,提出了一种面向实际康复需求的新型变导纳控制策略,制定了 4 条有利于康复效率与安全的模糊规则。 该策略利用交互力误差及其变化率作为模糊控制输入,实时改变导纳模型的参数,实现柔顺性自主调节。 仿真和 实验结果验证了所提出的变导纳模型控制策略可行性和所制定的 4 条模糊规则的有效性。 在患者可适应训练强 度的场景中,相较于固定导纳模型,变导纳模型追踪给定路径时产生的冗余路径最多可降低 56. 13%,提高了康复 训练效率;当康复运动超出患者可承受范围时,变导纳模型可提前 0. 5 s 改变追踪路径,提高了康复的安全性。
Abstract:
Traditional fixed-parameter admittance models could not adjust the compliance of upper limb rehabilitation robots in real-time, existing variable-parameter admittance models required improvement based on actual rehabilitation needs. To address this issue, a novel variable-admittance control strategy was proposed for upper limb rehabilitation robots with a self-developed series-parallel hybrid end-effector traction structure, combining fuzzy and admittance control and tailored to actual rehabilitation needs. Four fuzzy rules that could benefit rehabilitation efficiency and safety were developed. This strategy proposed the use of interaction force error and its rate of change as inputs to fuzzy control, to adjust admittance model parameters and achieve autonomous compliance control in real time. Simulation and experimental results validated the feasibility of the proposed variable-admittance control strategy and the effectiveness of the developed four fuzzy rules. In scenarios where patients could adapt to training intensity, the variable-admittance model could reduce the redundant path generated during path tracking by up to 56. 13% thus improving rehabilitation training efficiency. When rehabilitation movements exceeded the patients′ tolerance limit, the variable-admittance model could change the tracking path half a second earlier, improving rehabilitation safety

参考文献/References:

[1] HARA Y. Brain plasticity and rehabilitation in stroke patients[J].Journal of Nippon Medical School, 2015, 82(1): 4-13.

[2] ZUO S P, LI J F, DONG M J, et al. Optimum design and preliminary experiments of a novel parallel end traction apparatus for upper-limb rehabilitation[J].Frontiers of Mechanical Engineering, 2021, 16(4): 726-746.
[3] AGGOGERI F, MIKOLAJCZYK T, O′KANE J. Robotics for rehabilitation of hand movement in stroke survivors[J].Advances in Mechanical Engineering, 2019, 11(4): 1-14.
[4] TURNER D L, TANG X J, WINTERBOTHAM W, et al. Recovery of submaximal upper limb force production is correlated with better arm position control and motor impairment early after a stroke[J].Clinical Neurophysiology, 2012, 123(1): 183-192.
[5] WANG S S, LIAO J, YONG Z R, et al. Inertial sensor-based upper limb rehabilitation auxiliary equipment and upper limb functional rehabilitation evaluation[C]∥CCF Conference on Computer Supported Cooperative Work and Social Computing. Cham: Springer, 2022: 518-528.
[6] CALANCA A, MURADORE R, FIORINI P. A review of algorithms for compliant control of stiff and fixed-comp-liance robots[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 613-624.
[7] HOGAN N. Impedance control: an approach to manipulation[J].Journal of Dynamic Systems, Measurement, and Control,1985,107:1-7.
[8] BAI J, SONG A G, WANG T, et al. A novel backstepping adaptive impedance control for an upper limb rehabilitation robot[J].Computers &Electrical Engineering, 2019, 80: 1-13.
[9] SADO F, SIDEK S N, YUSOF H M. Adaptive hybrid impedance control for a 3DOF upper limb rehabilitation robot using hybrid automata[C]∥2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). Piscataway: IEEE, 2014: 596-601.
[10] RAGHAVAN P. Upper limb motor impairment after stroke[J].Physical Medicine and Rehabilitation Clinics of North America, 2015, 26(4): 599-610.
[11] 吴青聪, 王兴松, 吴洪涛, 等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J].机器人, 2018, 40(4): 457-465.WU Q C, WANG X S, WU H T, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J].Robot, 2018, 40(4): 457-465.
[12] AGUIRRE-OLLINGER G, COLGATE J E, PESHKIN M A, et al. Active-impedance control of a lower-limb assistive exoskeleton[C]∥2007 IEEE 10th International Conference on Rehabilitation Robotics. Piscataway: IEEE, 2007: 188-195.
[13] 乐宇倚, 郭帅. 基于变导纳控制的上肢康复机器人柔顺控制方法研究[J].工业控制计算机, 2021, 34(10): 9-11, 14.LE Y Y, GUO S. Research on compliance control method of upper-limb rehabilitation robot based on variable admittance control[J].Industrial Control Computer, 2021, 34(10): 9-11, 14.
[14] 梁旭, 王卫群, 苏婷婷, 等. 下肢康复机器人的主动柔顺自适应交互控制[J].机器人, 2021, 43(5): 547-556.LIANG X, WANG W Q, SU T T, et al. Active compliant and adaptive interaction control for a lower limb rehabilitation robot[J].Robot, 2021, 43(5): 547-556.
[15] LI X M, YANG Q Q, SONG R. Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot[J].IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1351-1359.
[16] 高建设, 王玉闯, 刘德平, 等. 新型四足步行机器人串并混联腿的轨迹规划与仿真研究[J].郑州大学学报(工学版), 2018, 39(2): 23-27, 38.GAO J S, WANG Y C, LIU D P, et al. Research on trajectory planning and simulation on the serial-parallel leg of a novel quadruped walking robot[J].Journal of Zhengzhou University (Engineering Science), 2018, 39(2): 23-27, 38.
[17] 李朋阳, 高建设, 顾昌利. 一种串并混联的上肢康复机器人轨迹规划研究[J].机械设计与制造, 2022(6): 265-269, 273.LI P Y, GAO J S, GU C L. Research on the trajectory planning of a series-parallel upper limb rehabilitation robot[J].Machinery Design &Manufacture, 2022(6): 265-269, 273.
[18] SERAJI H, COLBAUGH R. Force tracking in impedance control[J].International Journal of Robotics Research, 1997, 16(1): 97-117.
[19] 檀盼龙, 李益敏, 赵相宾, 等. 线性扩张状态观测滤波器的分析与应用[J].郑州大学学报(工学版), 2019, 40(2): 41-47.TAN P L, LI Y M, ZHAO X B, et al. Analysis and application of linear extended state observer filter[J].Journal of Zhengzhou University (Engineering Science), 2019, 40(2): 41-47.
[20] 赵相瑜, 缪志农. 模糊自适应控制中的参数调节[J].中国测试技术, 2004, 30(4): 24-26.ZHAO X Y, MIAO Z L. Parameters adjusting of adaptive fuzzy control[J].China Measurement Technology, 2004, 30(4): 24-26.
[21] BOSECKER C, DIPIETRO L, VOLPE B, et al. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke[J].Neurorehabilitation and Neural Repair, 2010, 24(1): 62-69.
[22] 胡寿松. 自动控制原理[M].6版. 北京: 科学出版社, 2013: 71-88.HU S S. Principle of automatic control[M].6th ed. Beijing: Science Press, 2013: 71-88.
[23] SUZUKI K, MIZUSHIMA S. Rehabilitation technology[M].New York: Elsevier, 1987: 432-694.
[24] LIU C G, HE Y, CHEN X A, et al. Discontinuous force-based robot adaptive switching update rate impedance control[C]∥2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE, 2021: 2573-2580.

相似文献/References:

[1]冯冬青,孔祥伟,许仿..城市恒压变频供水系统的一种智能优化控制策略[J].郑州大学学报(工学版),2011,32(01):85.[doi:10.3969/j.issn.1671-6833.2011.01.021]
[2]罗春雷,范增辉,贺建超,等.桩-土近共振沉桩模糊控制器研究[J].郑州大学学报(工学版),2012,33(03):48.[doi:10.3969/j.issn.1671-6833.2012.03.012]
 LUO Chunlei,FAN Zenghui,HE Jian-chao,et al.Study on Pile-soil’s Near-resonant Piles Fuzzy Controller[J].Journal of Zhengzhou University (Engineering Science),2012,33(01):48.[doi:10.3969/j.issn.1671-6833.2012.03.012]
[3]王冬晓,高学山,刘云辉..轮/履耦合式无障碍轮椅系统设计及运动分析[J].郑州大学学报(工学版),2012,33(04):55.[doi:10.3969/j.issn.1671-6833.2012.04.013]
 WANG Dongxiao,GAO Xueshan,LIU Yunhui.Design and Kinematic Analysis of Barrier.free Wheelchair System with aWheel-tracked Coupling Mechanism[J].Journal of Zhengzhou University (Engineering Science),2012,33(01):55.[doi:10.3969/j.issn.1671-6833.2012.04.013]
[4]赵伟,魏朗,张(韦华)..汽车超车并行工况下侧向避撞控制策略研究[J].郑州大学学报(工学版),2008,29(01):83.
 ZHAO Wei,Wei Lang,Zhang (Wei Hua)..Research on lateral collision avoidance control strategy under automobile overtaking parallel working conditions[J].Journal of Zhengzhou University (Engineering Science),2008,29(01):83.
[5]朱晓东,李晓媛,万红..纯滞后系统的模糊复合控制方法[J].郑州大学学报(工学版),2005,26(01):92.[doi:10.3969/j.issn.1671-6833.2005.01.024]
 ZHU Xiaodong,LI Xiaoyuan,Wan Hong.Fuzzy composite control method for pure hysteresis system[J].Journal of Zhengzhou University (Engineering Science),2005,26(01):92.[doi:10.3969/j.issn.1671-6833.2005.01.024]
[6]王明东,刘宪林..基于模糊控制理论的水轮发电机组调速器侧PSS研究[J].郑州大学学报(工学版),2003,24(02):96.[doi:10.3969/j.issn.1671-6833.2003.02.026]
 WANG Mingdong,Liu Xianlin.PSS research on governor side of hydro-generator set based on fuzzy control theory[J].Journal of Zhengzhou University (Engineering Science),2003,24(01):96.[doi:10.3969/j.issn.1671-6833.2003.02.026]
[7]刘武发,蒋蓁,龚振邦..超小型固定翼飞行器飞控系统研究[J].郑州大学学报(工学版),2003,24(03):78.[doi:10.3969/j.issn.1671-6833.2003.03.020]
[8]尚海涛,陈铁军..智能控制在黄原胶发酵温度及pH值控制中的应用[J].郑州大学学报(工学版),2002,23(01):55.[doi:10.3969/j.issn.1671-6833.2002.01.016]
 SHANG Haitao,Chen Tiejun.The application of intelligent control in xanthan gum fermentation temperature and pH control[J].Journal of Zhengzhou University (Engineering Science),2002,23(01):55.[doi:10.3969/j.issn.1671-6833.2002.01.016]
[9]师黎,丁海..PID控制的参数模糊自整定方法[J].郑州大学学报(工学版),2001,22(03):25.[doi:10.3969/j.issn.1671-6833.2001.03.007]
 Shi Li,Ding Hai.PID-controlled parameter fuzzy autotuning method[J].Journal of Zhengzhou University (Engineering Science),2001,22(01):25.[doi:10.3969/j.issn.1671-6833.2001.03.007]

更新日期/Last Update: 2024-01-23