[1]刘伟,刘赞,王玲玲..神经网络与结构编码法预测直馏汽油色谱保留指数[J].郑州大学学报(工学版),2004,25(03):26-28.[doi:10.3969/j.issn.1671-6833.2004.03.007]
 LIU Wei,LIU Zan,Wang Lingling.Neural network and structural coding method to predict the chromatographic retention index of straight-run gasoline[J].Journal of Zhengzhou University (Engineering Science),2004,25(03):26-28.[doi:10.3969/j.issn.1671-6833.2004.03.007]
点击复制

神经网络与结构编码法预测直馏汽油色谱保留指数()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
25
期数:
2004年03期
页码:
26-28
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Neural network and structural coding method to predict the chromatographic retention index of straight-run gasoline
作者:
刘伟刘赞王玲玲.
郑州大学生物工程系,河南,郑州,450052, 河南省环境监测中心站,河南,郑州,450004
Author(s):
LIU Wei; LIU Zan; Wang Lingling
关键词:
神经网络 结构编码 气相色谱保留指数
Keywords:
DOI:
10.3969/j.issn.1671-6833.2004.03.007
文献标志码:
A
摘要:
对直馏汽油中的单体烃的分子结构进行了数字编码,并采用误差反向传播神经网络算法构造了直馏汽油中单体烃的气相色谱保留指数与其分子结构的非线性相关模型,神经网络结构为3层,隐含层节点为7个,有15个输入,对应单体烃的15位数字编码,1个输出,对应气相色谱保留指数.预测结果表明,由误差反传算法所得的相关系数和标准偏差均优于多元线性回归方法.
Abstract:
The molecular structure of monomeric hydrocarbons in straight-run gasoline is digitally encoded, and the nonlinear correlation model between the gas chromatographic retention index and its molecular structure of monomeric hydrocarbons in straight-run gasoline is constructed by error backpropagation neural network algorithm, the neural network structure is 3 layers, the hidden layer nodes are 7, there are 15 inputs, corresponding to the 15-bit digital code of the monomer hydrocarbons, and 1 output, corresponding to the gas chromatographic retention index. The prediction results show that the correlation coefficient and standard deviation obtained by the error back-transmission algorithm are better than those obtained by the multiple linear regression method.

相似文献/References:

[1]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[2]邓万宇,李力,牛慧娟.基于Spark的并行极速神经网络[J].郑州大学学报(工学版),2016,37(05):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
 Deng Wanyu,Li Li,Niu Huijuan.Sparked-based Parallel Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2016,37(03):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
[3]肖斌,张恒宾,刘宏伟.改进PSO-BPNN算法在管道腐蚀预测中的应用[J].郑州大学学报(工学版),2022,43(01):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
 XIAO Bin,ZHANG Hengbin,LIU Hongwei.Application of Improved PSO-BPNN Algorithm in Corroded Pipelines Prediction[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
[4]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[5]周洪煜,陈晓煜,徐春霞..预测控制在中央空调净化系统中的应用[J].郑州大学学报(工学版),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
 ZHOU Hongyu,CHEN Xiaoyu,Xu Chunxia.Application of predictive control in central air conditioning purification system[J].Journal of Zhengzhou University (Engineering Science),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
[6]郭克希,谭佩莲,唐进元..基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测[J].郑州大学学报(工学版),2009,30(03):65.
 GUO Kexi,TAN Peilian,TANG Jinyuan.Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network[J].Journal of Zhengzhou University (Engineering Science),2009,30(03):65.
[7]樊亚军,曲仕茹..利用BP神经网络实现三维飞机目标识别[J].郑州大学学报(工学版),2004,25(04):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
 Fan Yajun,Qu Shiru.BP neural network is used to realize three-dimensional aircraft target recognition[J].Journal of Zhengzhou University (Engineering Science),2004,25(03):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
[8]王少波,柴艳丽,梁醒培..神经网络学习样本点的选取方法比较[J].郑州大学学报(工学版),2003,24(01):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
 Wang Shaobo,Chai Yanli,Liang Xingpei.Comparison of the selection methods of neural network learning sample points[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
[9]刘应梅,杨宛辉,章健,等.基于人工神经网络的变电站故障诊断[J].郑州大学学报(工学版),1999,20(04):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]
 LIU Yingmei,Yang Wanhui,ZHANG Jian,et al.Substation fault diagnosis based on artificial neural network[J].Journal of Zhengzhou University (Engineering Science),1999,20(03):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]
[10]高金峰,宁彦卿.谐波分析神经网络的开关电容实现[J].郑州大学学报(工学版),1997,18(04):1.
 Gao Jinfeng,Ning Yanqing.Harmonic analysis neural network switch capacitance realization[J].Journal of Zhengzhou University (Engineering Science),1997,18(03):1.

更新日期/Last Update: 1900-01-01